Buch, Englisch, 348 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 797 g
Reihe: Series in BioEngineering
Buch, Englisch, 348 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 797 g
Reihe: Series in BioEngineering
ISBN: 978-981-97-6369-6
Verlag: Springer Nature Singapore
This book pushes the limits of conventional MRI visualization methods by completely changing the medical imaging landscape and leads to innovations that will help patients and healthcare providers alike. It enhances the capabilities of MRI anatomical visualization to a level that has never before been possible for researchers and clinicians. The computational and digital algorithms developed can enable a more thorough understanding of the intricate structures found within the human body, surpassing the constraints of traditional 2D methods. The Physics-informed Neural Networks as presented can enhance three-dimensional rendering for deeper understanding of the spatial relationships and subtle abnormalities of anatomical features and sets the stage for upcoming advancements that could impact a wider range of digital heath modalities. This book opens the door to ultra-powerful digital molecular MRI powered by quantum computing that can perform calculations that would take supercomputers millions of years.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Naturwissenschaften Chemie Analytische Chemie Magnetresonanz
- Naturwissenschaften Physik Angewandte Physik Biophysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Onkologie, Krebsforschung
Weitere Infos & Material
General Introduction.- Physics Informed Neural Networks PINNS.- New Methodology and Modelling In Magnetic Resonance Imaging.- Physics informed Neural Network for Addressing Spatial and Temporal.- Machine Learning Model for Diagnosis of Pulmonary Arterial Hypertension.- A Convolution Neural Network for Artificial Intelligence-Based Classification of Alzheimer’s Diseases.- Physics informed Neural Networks for Nuclear Magnetic Resonance Guided Clinical Hyperthermia.