A Tribute to Olvi Mangasarian Volume I
Buch, Englisch, 273 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g
ISBN: 978-1-4613-7367-4
Verlag: Springer US
This collection of papers covers a wide spectrum of computational optimization topics, representing a blend of familiar nonlinear programming topics and such novel paradigms as semidefinite programming and complementarity-constrained nonlinear programs. Many new results are presented in these papers which are bound to inspire further research and generate new avenues for applications. An informal categorization of the papers includes: - Algorithmic advances for special classes of constrained optimization problems
- Analysis of linear and nonlinear programs
- Algorithmic advances
- B- stationary points of mathematical programs with equilibrium constraints
- Applications of optimization
- Some mathematical topics
- Systems of nonlinear equations.
Zielgruppe
Research
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Wirtschaftswissenschaften Betriebswirtschaft Management Entscheidungsfindung
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
Guest Editorial.- Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming.- A Logarithmic-Quadratic Proximal Method for Variational Inequalities.- A Note on Error Bounds for Convex and Nonconvex Programs.- Multicategory Classification by Support Vector Machines.- Quartic Barriers.- A Partitioned ?-Relaxation Algorithm for Separable Convex Network Flow Problems.- On a Primal-Dual Analystic Center Cutting Plane Method for Variational Inequalities.- A Shifted-Barrier Primal-Dual Algorithm Model for Linearly Constrained Optimization Problems.- Arithmetic Continuation of Regular Roots of Formal Parametric Polynomial Systems.- Interfaces to PATH 3.0: Design, Implementation and Usage.- Existence and Limiting Behavior of Trajectories Associated with Po-equations.- Stabilized Sequential Quadratic Programming.