Christophorou | Gaseous Dielectrics III | E-Book | sack.de
E-Book

E-Book, Englisch, 598 Seiten, Web PDF

Christophorou Gaseous Dielectrics III

Proceedings of the Third International Symposium on Gaseous Dielectrics, Knoxville, Tennessee, U.S.A., March 7-11, 1982
1. Auflage 2013
ISBN: 978-1-4832-7989-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Third International Symposium on Gaseous Dielectrics, Knoxville, Tennessee, U.S.A., March 7-11, 1982

E-Book, Englisch, 598 Seiten, Web PDF

ISBN: 978-1-4832-7989-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Gaseous Dielectrics III is a collection of papers presented at the Third International Symposium on Gaseous Dielectrics, held in Knoxville, Tennessee on March 7-11, 1982. This book is divided into 12 chapters, and begins with the elastic scattering of electrons in gases, particularly the measurements of differential cross sections at low energies for electrons in electron-attaching gases. The next chapters deal with the basic mechanism of gaseous dielectrics, particularly the spark formation, corona attenuation and distortion, and examples of gaseous dielectric systems. These topics are followed by discussions on the practical problems of impulse breakdown, as well as the influence of gas pressure, gap distance, field distribution, and overvoltage on the formative time lag for approximately uniform field distribution. Other chapters examine the concept of surface flashover and the decomposition, aging, and bioenvironmental effects of gaseous dielectrics. The final chapters look into their analysis, gas-insulated equipment, and the properties of hexafluorosulfide. This book will prove useful to basic scientists, engineers, and users of gaseous dielectrics.

Christophorou Gaseous Dielectrics III jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Gaseous Dielectrics III;4
3;Copyright Page;5
4;Table of Contents;8
5;PREFACE;6
6;CHAPTER 1. BASIC PHYSICS OF GASEOUS DIELECTRICS;16
6.1;ELASTIC SCATTERING DATA FOR ELECTRONS IN ATTACHING GASES;16
6.1.1;ABSTRACT;16
6.1.2;KEYWORDS;16
6.1.3;INTRODUCTION;16
6.1.4;EXPERIMENTAL TECHNIQUES AND FACTORS LIMITING DATA ACCURACY;17
6.1.5;DATA FOR ATTACHING GASES;18
6.1.6;ACKNOWLEDGEMENT;20
6.1.7;REFERENCES;20
6.1.8;DISCUSSION;21
6.2;PRESSURE-DEPENDENT ELECTRON ATTACHMENT RATES IN PERFLUOROALKANES AND PERFLUOROPROPYLENE (1-C3F6) AND THEIR EFFECT ON THE BREAKDOWN STRENGTH OF THESE GASES;22
6.2.1;ABSTRACT;22
6.2.2;KEYWORDS;22
6.2.3;INTRODUCTION;22
6.2.4;ELECTRON ATTACHMENT STUDIES;23
6.2.5;BREAKDOWN MEASUREMENTS IN 1-C3F6;28
6.2.6;DISCUSSION;32
6.2.7;ACKNOWLEDGEMENT;34
6.2.8;REFERENCES;34
6.2.9;DISCUSSION;36
6.3;MOBILITY AND RECOMBINATION OF IONS AND THE EFFECTIVE IONIZATION COEFFICIENT IN HEXAFLUOROPROPENE (C3F6);38
6.3.1;ABSTRACT;38
6.3.2;KEYWORDS;38
6.3.3;INTRODUCTION;38
6.3.4;EXPERIMENTAL;39
6.3.5;RESULTS AND DISCUSSION;42
6.3.6;ACKNOWLEDGEMENT;45
6.3.7;REFERENCES;45
6.3.8;DISCUSSION;46
6.4;THE CONTROL OF BREAKDOWN AND RECOVERY IN GASES BY PULSED ELECTRON BEAMS;49
6.4.1;ABSTRACT;49
6.4.2;KEY WORDS;49
6.4.3;INTRODUCTION;49
6.4.4;DESCRIPTION OF THE EXPERIMENT;50
6.4.5;EXPERIMENTAL RESULTS;52
6.4.6;REFERENCES;53
6.4.7;DISCUSSION;54
6.5;ELECTRON ATTACHMENT IN FREON IN THE ABSENCE OF IONIZATION USING MIXTURES OF FREON AND INERT GASES;55
6.5.1;ABSTRACT;55
6.5.2;KEYWORDS;55
6.5.3;INTRODUCTION;55
6.5.4;EXPERIMENTAL TECHNIQUE;56
6.5.5;RESULTS AND DISCUSSION;57
6.5.6;REFERENCES;59
6.6;AN ANALYTIC FORMULATION OF ELECTRON DISTRIBUTION FUNCTION FROM TRANSPORT COEFFICIENTS OF ELECTRON SWARM;60
6.6.1;ABSTRACT;60
6.6.2;KEYWORDS;60
6.6.3;I INTRODUCTION;60
6.6.4;II SOLUTION TO BOLTZMANN EQUATION BY THE MULTIPLE COLLISIONS METHOD;61
6.6.5;III APPLICATION TO THE DETERMINATION OF f(v) WITH A CONSTANT COLLISION FREQUENCY;63
6.6.6;CONCLUSION;66
6.6.7;REFERENCES;66
7;CHAPTER 2. BASIC MECHANISMS: PREBREAKDOWN;68
7.1;STREAMER-TO-SPARK TRANSITION IN SHORT POINT-TO-PLANE GAPS;68
7.1.1;ABSTRACT;68
7.1.2;KEYWORDS;68
7.1.3;INTRODUCTION;68
7.1.4;EXPERIMENTAL PROCEDURE;68
7.1.5;ATTACHMENT RATE MEASUREMENTS;69
7.1.6;CRITICAL STREAMER ENERGY FOR SPARK TRANSITION;71
7.1.7;ACKNOWLEDGEMENTS;73
7.1.8;REFERENCES;73
7.1.9;DISCUSSION;74
7.2;ABOUT THE VALIDITY OF STREAMER MECHANISM IN COMPRESSED GASES;75
7.2.1;ABSTRACT;75
7.2.2;KEYWORDS;75
7.2.3;INTRODUCTION;75
7.2.4;TEST PROCEDURE;76
7.2.5;TEST CONDITIONS;76
7.2.6;PERFORMANCE OF THE MEASUREMENTS;76
7.2.7;RECONSTRUCTION OF PREDISCHARGE DEVELOPMENT;77
7.2.8;DISCUSSION;81
7.2.9;ACKNOWLEDGEMENT;81
7.2.10;REFERENCES;81
7.2.11;DISCUSSION;82
7.3;CORONA STABILIZATION IN SF6-/N2- MIXTURES UNDER IMPULSE CONDITIONS;83
7.3.1;ABSTRACT;83
7.3.2;KEYWORDS;83
7.3.3;INTRODUCTION;83
7.3.4;EXPERIMENTAL;84
7.3.5;RESULTS AND INTERPRETATION;84
7.3.6;CONCLUSION;88
7.3.7;ACKNOWLEDGEMENT;89
7.3.8;REFERENCES;89
7.3.9;DISCUSSION;90
7.4;CORONA AND BREAKDOWN IN COAXIAL-ELECTRODE GEOMETRY IN SF6 AND SF6/N2 MIXTURES;92
7.4.1;ABSTRACT;92
7.4.2;KEYWORDS;92
7.4.3;INTRODUCTION;92
7.4.4;EXPERIMENTAL;93
7.4.5;RESULTS AND DISCUSSION;93
7.4.6;CONCLUSIONS;98
7.4.7;REFERENCES;98
7.4.8;DISCUSSION;99
7.5;A STUDY OF PREBREAKDOWN PROCESSES INFLUENCING THE VOLT-TIME CHARACTERISTICS OF GASEOUS INSULATION;101
7.5.1;ABSTRACT;101
7.5.2;KEY WORDS;101
7.5.3;INTRODUCTION;101
7.5.4;APPARATUS AED PROCEDURE;102
7.5.5;CURRENT PULSE SHAPES;102
7.5.6;ABSORPTION COEFFICIENTS;103
7.5.7;CONCLUSIONS;103
7.5.8;ACKNOWLEDGEMENTS;103
7.5.9;REFERENCES;103
7.5.10;DISCUSSION;106
7.6;MASS SPECTROMETRY OF LOW ENERGY IONS EXTRACTED FROM MEDIUM PRESSURE AIR CORONAS;107
7.6.1;ABSTRACT;107
7.6.2;KEYWORDS;107
7.6.3;INTRODUCTION;107
7.6.4;APPARATUS AND TESTING CONDITIONS;108
7.6.5;THE BLOCKING EFFECT AND THE SANDWICH EXTRACTION FOIL;108
7.6.6;SYSTEMATIC EVALUATION OF Al(Au), Mo AND SS EXTRACTION FOILS;109
7.6.7;ACKNOWLEDGEMENTS;111
7.6.8;REFERENCES;111
7.7;DC AND PULSE COMPONENTS OF POSITIVE CORONA CURRENT FROM TWO INTERACTING NEEDLES IN AIR;112
7.7.1;ABSTRACT;112
7.7.2;KEYWORDS;112
7.7.3;INTRODUCTION;112
7.7.4;EXPERIMENTAL SET UP AND TECHNIQUE;113
7.7.5;RESULTS AND DISCUSSIONS;113
7.7.6;REFERENCES;115
8;CHAPTER 3. BASIC MECHANISMS: BREAKDOWN;118
8.1;NON-UNIFORM FIELD BREAKDOWN : ENGINEERING MODELS;118
8.1.1;ABSTRACT;118
8.1.2;KEYWORDS;118
8.1.3;INTRODUCTION;118
8.1.4;CONCLUDING OBSERVATIONS I;123
8.1.5;CONCLUDING OBSERVATIONS II;130
8.1.6;ACKNOWLEDGEMENTS;131
8.1.7;REFERENCES;131
8.1.8;DISCUSSION;132
8.2;DIELECTRIC STRENGTH OF ELECTRONEGATIVE GASES IN NON-UNIFORM FIELD : ROLE OF THE VIBRATIONAL EXCITATION;134
8.2.1;ABSTRACT;134
8.2.2;KEYWORDS;134
8.2.3;INTRODUCTION;134
8.2.4;EQUATIONS FOR THE DISCHARGE SIMULATION;135
8.2.5;ANALYSIS IN AIR;136
8.2.6;DISCUSSION;137
8.2.7;REFERENCES;138
8.2.8;DISCUSSION;141
8.3;PRESSURE DEPENDENCE OF DC BREAKDOWN VOLTAGE AND CURRENT FOR SF6 IN THE INHOMOGENEOUS FIELD;143
8.3.1;ABSTRACT;143
8.3.2;KEYWORDS;143
8.3.3;INTRODUCTION;143
8.3.4;EXPERIMENTAL;144
8.3.5;RESULTS;145
8.3.6;REMARKS;149
8.3.7;ACKNOWLEDGEMENTS;149
8.3.8;REFERENCE;149
8.3.9;DISCUSSION;150
8.4;DIELECTRIC STRENGTH OF SF6 IN DIVERGENT FIELD CONFIGURATION;151
8.4.1;ABSTRACT;151
8.4.2;INTRODUCTION;151
8.4.3;DESCRIPTION OF TEST FIXTURE AND ELECTRODES;151
8.4.4;DISCUSSION;153
8.4.5;CONCLUSION;155
8.4.6;ACKNOWLEDGEMENTS;155
8.4.7;REFERENCES;155
8.5;SPARKING POTENTIALS CALCULATED FROM THE ELECTRON - MOLECULE COLLISION PROPERTIES OF GASES;156
8.5.1;ABSTRACT;156
8.5.2;KEYWORDS;156
8.5.3;INTRODUCTION;156
8.5.4;ENERGY DISTRIBUTION FUNCTION;157
8.5.5;APPROXIMATIONS FOR CALCULATING THE BREAKDOWN POTENTIAL;158
8.5.6;APPLICATIONS TO THE CALCULATION OF a,. AND THE SPARKING POTENTIAL;158
8.5.7;REFERENCES;159
8.6;SPECTROSCOPIC STUDY OF LOW PRESSURE FLUORINE-CONTAINING GAS DISCHARGE;161
8.6.1;ABSTRACT;161
8.6.2;KEYWORDS;161
8.6.3;INTRODUCTION;161
8.6.4;EXPERIMENTAL APPARATUS;161
8.6.5;EXPERIMENTAL RESULTS AND DISCUSSION;162
8.6.6;CONCLUSIONS;165
8.6.7;REFERENCES;165
9;CHAPTER 4. NEW GASEOUS DIELECTRICS;166
9.1;TERNARY GAS DIELECTRICS;166
9.1.1;ABSTRACT;166
9.1.2;KEYWORDS;166
9.1.3;ALTERNATIVE GASES TO SF6;166
9.1.4;CHOICE OF THE COMPONENT GASES;167
9.1.5;REDUCTION OF THE PFC CARBONIZATION AND THE SF6 PRODUCT FORMATION PROBLEMS IN PFC, SF6 MIXTURES;168
9.1.6;IMPULSE BREAKDOWN CHARACTERISTICS;170
9.1.7;DC NONUNIFORM FIELD PROPERTIES;171
9.1.8;OPTIMIZATION OF THE DIELECTRIC STRENGTH OF THE TERNARY GAS DIELECTRIC;175
9.1.9;DEW POINTS AND RELATIVE COSTS;176
9.1.10;ACKNOWLEDGEMENT;176
9.1.11;REFERENCES;177
9.1.12;DISCUSSION;179
9.2;HIGH DIELECTRIC STRENGTH GAS MIXTURES COMPRISING SULPHUR HEXAFLUORIDE, CARBON MONOXIDE AND OCTAFLUOROCYCLOBUTANE;181
9.2.1;ABSTRACT;181
9.2.2;KEYWORDS;181
9.2.3;INTRODUCTION;181
9.2.4;EXPERIMENTAL SETUP AND PROCEDURE;182
9.2.5;RESULTS AND DISCUSSION;183
9.2.6;CONCLUSIONS;186
9.2.7;REFERENCES;187
9.2.8;DISCUSSION;188
9.3;HOMOGENEOUS FIELD BREAKDOWN STRENGTH CHARACTERISTICS OF SOME DIELECTRIC GASES;189
9.3.1;ABSTRACT;189
9.3.2;KEYWORDS;189
9.3.3;INTRODUCTION;189
9.3.4;APPARATUS;191
9.3.5;RESULTS AND DISCUSSION;192
9.3.6;CONCLUSION;196
9.3.7;ACKNOWLEDGEMENT;197
9.3.8;REFERENCES;197
9.4;IMPULSE BREAKDOWN IN SF6, SF6/N2 AND SF6/N2/PERFLUOROCARBON MIXTURES;198
9.4.1;ABSTRACT;198
9.4.2;KEYWORDS;198
9.4.3;INTRODUCTION;198
9.4.4;EXPERIMENTAL APPARATUS;199
9.4.5;RESULTS;199
9.4.6;DISCUSSIONS AND CONCLUSIONS;203
9.4.7;ACKNOWLEDGEMENT;204
9.4.8;REFERENCES;204
9.5;A UNIFIED APPROACH FOR CALCUIATION OF BREAKDOWN VOLTAGES OF MIXTURES OF ELECTRON–ATTACHING GASES;206
9.5.1;ABSTRACT;206
9.5.2;KEYWORDS;206
9.5.3;INTRODUCTION;206
9.5.4;ANALYSIS;207
9.5.5;DISCUSSION;210
9.5.6;ACKNOWLEDGEMENTS;211
9.5.7;REFERENCES;211
10;CHAPTER 5. IMPULSE BREAKDOWN;214
10.1;PRACTICAL PROBLEMS OF IMPULSE BREAKDOWN REQUIRING A PHYSICAL APPROACH;214
10.1.1;ABSTRACT;214
10.1.2;KEYWORDS;214
10.1.3;INTRODUCTION;214
10.1.4;SWITCHING IMPULSE WITH VERY LOW DISCHARGE PROBABILITY;214
10.1.5;EFFECT OF ATMOSPHERIC CHARACTERISTICS ON SPARKOVER VOLTAGES;217
10.1.6;LIGHTNING DISCHARGES TO OVERHEAD LINES;218
10.1.7;SPARKOVER VOLT TIME CURVES FOR AIR INSULATION IN THE MICROSECOND RANGE;220
10.1.8;LIGHTNING IMPULSE DIELECTRIC STRENGTH CIRCUIT - BREAKERS OF VACUUM;221
10.1.9;CONCLUSIONS;222
10.1.10;REFERENCES;222
10.1.11;DISCUSSION;223
10.2;CRITICAL AVALANCHE SIZE FOR IMPULSE BREAKDOWN IN QUASI-UNIFORM FIELD SF6 GAPS;225
10.2.1;ABSTRACT;225
10.2.2;KEY WORDS;225
10.2.3;INTRODUCTION;225
10.2.4;PROPOSED METHOD OF PREDICTING THE AVERAGE V-T CHARACTERISTICS OF A GAS GAP;226
10.2.5;DEFINITION OF THE CRITICAL AVALANCHE;226
10.2.6;DETERMINATION OF THE CRITICAL AVALANCHE SIZE;229
10.2.7;EVALUATION OF THE V-T CHARACTERISTICS;230
10.2.8;CONCLUSIONS;232
10.2.9;REFERENCES;232
10.2.10;ACKNOWLEDGEMENT;232
10.2.11;DISCUSSION;233
10.3;TIME LAGS IN SF6 UNDER IMPULSE CONDITIONS;234
10.3.1;ABSTRACT;234
10.3.2;KEYWORDS;234
10.3.3;INTRODUCTION;234
10.3.4;CRITICAL VOLUME APPROACH - VON LAUE DIAGRAMS;235
10.3.5;OPERATING CONDITIONS;236
10.3.6;CONDITIONING EFFECT;236
10.3.7;SURVEY OF ELECTRON SOURCES IN STABILIZED GAS;238
10.3.8;VALIDITY OF THE CRITICAL VOLUME CONCEPT - COMPUTATION OF D;239
10.3.9;CONCLUSIONS;240
10.3.10;REFERENCES;241
10.3.11;DISCUSSION;242
10.4;PARAMETERS INFLUENCING THE SWITCHING SURGE STRENGTH OF TRANSMISSION LINE AIR INSULATION;244
10.4.1;ABSTRACT;244
10.4.2;INTRODUCTION;244
10.4.3;BREAKDOWN MECHANISM;245
10.4.4;BREAKDOWN PARAMETERS;247
10.4.5;CRITICAL IMPULSE SHAPE;249
10.4.6;CONCLUSIONS;250
10.4.7;REFERENCES;250
10.4.8;DISCUSSION;251
10.5;AIR INSULATION BEHAVIOUR UNDER OSCILLATING IMPULSES;252
10.5.1;ABSTRACT;252
10.5.2;KEYWORDS;252
10.5.3;INTRODUCTION;252
10.5.4;EXPERIMENTAL ARRANGEMENT;253
10.5.5;RESULTS AND DISCUSSION;253
10.5.6;CONCLUSIONS;256
10.5.7;ACKNOWLEDGMENTS;256
10.5.8;REFERENCES;256
10.6;POSITIVE SWITCHING IMPULSE BREAKDOWN OF SPHERE-PLANE GAPS IN DRY AND MOIST AIR;257
10.6.1;ABSTRACT;257
10.6.2;KEYWORDS;257
10.6.3;APPARATUS;257
10.6.4;OBJECTIVES;257
10.6.5;RESULTS;258
10.7;COMMENTS ON THE CARRARA-THIONE BREAKDOWN MODEL OF LONG AIR GAP DURING POSITIVE SWITCHING SURGES;259
10.7.1;ABSTRACT;259
10.7.2;KEYWORDS;259
10.7.3;INTRODUCTION;259
10.7.4;CARRARA'S DISCHARGE MODEL;259
10.7.5;DISCUSSION OF THE CRITERION OF EQUIVALENCE OF CRITICAL RADIUS Rc;261
10.7.6;DISCUSSION OF THE EQUIVALENT CRITERION FOR THE DETERMINATION OF THE LEADER PROPAGATING VOLTAGE OF ANY ELECTRODE ..l (COEFFICIENT ß);263
10.7.7;EXAMPLE;263
10.7.8;EXPERIMENTAL RESULTS;264
10.7.9;CONCLUSIONS;264
10.7.10;REFERENCES;264
11;CHAPTER 6. TIME LAGS AND V-t CHARACTERISTICS;266
11.1;FORMATIVE TIME LAG IN SF6 AND N2;266
11.1.1;ABSTRACT;266
11.1.2;KEYWORDS;266
11.1.3;INTRODUCTION;266
11.1.4;TEST METHOD AND TEST PERFORMANCE;267
11.1.5;TEST RESULTS;267
11.1.6;DISCUSSION;270
11.1.7;REFERENCES;270
11.1.8;DISCUSSION;273
11.2;VOLTAGE-TIME CHARACTERISTICS OF BREAKDOWN IN SF6;274
11.2.1;ABSTRACT;274
11.2.2;KEYWORDS;274
11.2.3;INTRODUCTION;274
11.2.4;RESULTS;274
11.2.5;VOLTAGE-TIME CHARACTERISTICS FOR A 550 kV, 9 m LONG CGIT SYSTEM;279
11.2.6;DISCUSSION AND CONCLUSIONS;280
11.2.7;ACKNOWLEDGEMENT;280
11.2.8;REFERENCES;280
11.2.9;DISCUSSION;281
11.3;THE STATISTICAL TIME-LAG TO SPARK BREAKDOWN IN HIGH PRESSURE SF6;282
11.3.1;ABSTRACT;282
11.3.2;KEYWORDS;282
11.3.3;INTRODUCTION;282
11.3.4;THEORETICAL;283
11.3.5;EXPERIMENTAL;284
11.3.6;RESULTS;285
11.3.7;CONCLUSIONS;288
11.3.8;REFERENCES;288
11.3.9;DISCUSSION;289
11.4;STATISTICAL VOLTAGE-TIME CURVES OF AN SF6-INSULATED COAXIAL-CYLINDER GAP;291
11.4.1;ABSTRACT;291
11.4.2;KEY WORDS;291
11.4.3;INTRODUCTION;291
11.4.4;EXPERIMENTAL SETUP AND TEST PROCEDURES;292
11.4.5;EXPERIMENTAL RESULTS AND DISCUSSION;292
11.4.6;CONCLUSIONS;296
11.4.7;REFERENCES;297
11.4.8;DISCUSSION;299
11.5;VOLTAGE-TIME CHARACTERISTICS OF PARTICLE-INITIATED BREAKDOWN IN SF6 GAS;300
11.5.1;ABSTRACT;300
11.5.2;INTRODUCTION;300
11.5.3;EXPERIMENTAL METHOD;301
11.5.4;V-t CHARACTERISTICS OF GAS-GAP;302
11.5.5;V-t CHARACTERISTICS OF INSULATOR SURFACE;303
11.5.6;CONCLUSIONS;306
11.5.7;REFERENCES;306
11.5.8;DISCUSSION;307
12;CHAPTER 7. EFFECTS OF PARTICLES AND MATERIALS;308
12.1;THE INFLUENCE OF PARTI CULATE MATTER ON THE BREAKDOWN OF LARGE SPHERE-GAPS;308
12.1.1;ABSTRACT;308
12.1.2;KEYWORDS;308
12.1.3;INTRODUCTION;308
12.1.4;APPARATUS;309
12.1.5;RESULTS;309
12.1.6;VISUAL OBSERVATIONS;311
12.1.7;PHOTOGRAPHIC OBSERVATION;312
12.1.8;DISCUSSION;313
12.1.9;CONCLUSIONS;313
12.1.10;REFERENCES;314
12.1.11;ACKNOWLEDGEMENTS;314
12.2;ULTRASONIC DETECTION OF PARTICLE MOVEMENT AND PARTIAL DISCHARGES IN GAS INSULATED APPARATUS;315
12.2.1;ABSTRACT;315
12.2.2;KEYWORDS;315
12.2.3;INTRODUCTION;315
12.2.4;EXPERIMENTS AND RESULTS;316
12.2.5;CONCLUSIONS;318
12.2.6;REFERENCES;319
12.2.7;DISCUSSION;320
12.3;FEASIBILITY STUDIES FOR IMPROVING GAS INSULATION BY COATING CONTAMINATING PARTICLES;322
12.3.1;ABSTRACT;322
12.3.2;KEYWORDS;322
12.3.3;INTRODUCTION;322
12.3.4;APPARATUS;322
12.3.5;PARTICLE COATING;323
12.3.6;PARTICLE TRAPPING;325
12.3.7;DISCUSSION;326
12.3.8;ACKNOWLEDGEMENTS;327
12.3.9;REFERENCES;327
12.3.10;DISCUSSION;329
12.4;IMPULSE BREAKDOWN OF SF6/N2 INSULATION. INFLUENCE OF ELECTRODE COVERING. POLARITY EFFECTS.;330
12.4.1;ABSTRACT1;330
12.4.2;KEYWORDS;330
12.4.3;INTRODUCTION;330
12.4.4;BREAKDOWN OF SF6/N2 MIXTURES, GENERAL CONSIDERATIONS;331
12.4.5;EXPERIMENTS AND RESULTS;331
12.4.6;CONCLUSIONS;335
12.4.7;REFERENCES;335
12.4.8;DISCUSSION;336
12.5;DETERIORATION OF EPOXY MOLD INSULATIONS DUE TO VOLTAGE ENDURANCE;337
12.5.1;ABSTRACT;337
12.5.2;KEYWORDS;337
12.5.3;INTRODUCTION;337
12.5.4;EXPERIMENTAL METHOD;338
12.5.5;RESULTS;338
12.5.6;DISCUSSION;339
12.5.7;CONCLUSIONS;341
12.5.8;REFERENCES;341
12.6;INFLUENCE OF THE NATURE OF ELECTRODE MATERIAL ON THE PRODUCTION OF CORROSIVE SPECIES IN A CORONA DISCHARGE;342
12.6.1;ABSTRACT;342
12.6.2;KEYWORDS;342
12.6.3;INTRODUCTION;342
12.6.4;1. GENERALITIES;342
12.6.5;2. EXPERIMENTAL ARRANGEMENT AND PROCEDURE;343
12.6.6;3. RESULTS;344
12.6.7;4. DISCUSSION;345
12.6.8;4. CONCLUSION;345
12.6.9;REFERENCES;346
12.7;THE NEGATIVE POLARITY D.C. BREAKDOWN OF ROD/PLANE GAPS UP TO 1 MV, AS AFFECTED BY PROTRUSIONS FROM THE PLANE;347
12.7.1;ABSTRACT;347
12.7.2;KEYWORDS;347
12.7.3;INTRODUCTION;347
12.7.4;APPARATUS AND MEASURING TECHNIQUES;347
12.7.5;RESULTS;348
12.7.6;CONCLUSIONS;351
12.7.7;REFERENCES;351
12.7.8;ACKNOWLEDGEMENT;351
13;CHAPTER 8. SURFACE FLASHOVER;352
13.1;SURFACE FLASHOVER OF GAS/SOLID INTERFACES;352
13.1.1;ABSTRACT;352
13.1.2;KEYWORDS;352
13.1.3;INTRODUCTION;352
13.1.4;LARGE ELECTRIC FIELDS ON COMPRESSED-GAS/SOLID INTERFACES;353
13.1.5;SENSITIVITY OF SURFACE FLASHOVER TO NEARBY PERTURBATION: FIELD-DRIVEN INCEPTION;354
13.1.6;SURFACE FLASHOVER MODEL;356
13.1.7;CONCLUSIONS;360
13.1.8;ACKNOWLEDGMENT;360
13.1.9;REFERENCES;360
13.1.10;DISCUSSION;362
13.2;PREDISCHARGE CURRENT MEASUREMENTS AND OPTICAL SURFACE FIELD MEASUREMENTS ASSOCIATED WITH INSULATOR SURFACE FLASHOVER;364
13.2.1;ABSTRACT;364
13.2.2;KEYWORDS;364
13.2.3;INTRODUCTION;364
13.2.4;EXPERIMENTAL ARRANGEMENT AND TECHNIQUES;365
13.2.5;RESULTS AND DISCUSSION;366
13.2.6;SUMMARY;369
13.2.7;REFERENCES;369
13.2.8;DISCUSSION;370
13.3;DEVELOPMENT OF SURFACE CHARGES ON EPOXY RESIN SPACERS STRESSED WITH DIRECT APPLIED VOLTAGES;371
13.3.1;ABSTRACT;371
13.3.2;KEYWORDS;371
13.3.3;INTRODUCTION;371
13.3.4;EXPERIMENTAL PROCEDURE;372
13.3.5;RESULTS;373
13.3.6;DISCUSSION;376
13.3.7;CONCLUSIONS;377
13.3.8;REFERENCES;377
13.3.9;DISCUSSION;378
13.4;CHARGE ACCUMULATION ON SPACER SURFACE AT DC STRESS IN COMPRESSED SF6 GAS;380
13.4.1;ABSTRACT;380
13.4.2;KEYWORDS;380
13.4.3;INTRODUCTION;380
13.4.4;EXPERIMENTAL APPARATUS AND METHODS;381
13.4.5;CHARACTERISTICS OF ACCUMULATED CHARGES;382
13.4.6;DISCUSSION ON CHARGE ACCUMULATION;383
13.4.7;CONCLUSIONS;387
13.4.8;REFERENCES;387
13.4.9;DISCUSSION;388
13.5;ELECTROSTATIC FIELD EVALUATION BY THE ELECTROLYTIC TANK METHOD;389
13.5.1;ABSTRACT;389
13.5.2;KEYWORDS;389
13.5.3;INTRODUCTION;389
13.5.4;PRINCIPLE OF ELECTROLYTIC TANK ANALOG;389
13.5.5;EXPERIMENTAL;391
13.5.6;RESULTS AND DISCUSSION;391
13.5.7;SUMMARY;393
13.5.8;REFERENCES;393
13.5.9;ACKNOWLEDGEMENT;393
13.6;SURFACE DISCHARGE IN SF6;394
13.6.1;ABSTRACT;394
13.6.2;KEYWORDS;394
13.6.3;INTRODUCTION;394
13.6.4;EXPERIMENTAL;395
13.6.5;MEASUREMENT RESULTS;395
13.6.6;DISCHARGE MODEL;398
13.6.7;CONCLUSIONS;399
13.6.8;REFERENCES;400
14;CHAPTER 9. DECOMPOSITION, AGING, AND BIOENVIRONMENTAL EFFECTS;402
14.1;STUDIES OF SPARK DECOMPOSITION PRODUCTS OF SF6 AND SF6/PERFLUOROCARBON MIXTURES;402
14.1.1;ABSTRACT;402
14.1.2;KEYWORDS;402
14.1.3;INTRODUCTION;402
14.1.4;APPARATUS;404
14.1.5;POSITIVE IONS IN SPARKED SF6;405
14.1.6;NEUTRAL DECOMPOSITION PRODUCTS;407
14.1.7;REDUCTION IN CORROSIVE SF6 BY-PRODUCTS';412
14.1.8;CONCLUSIONS;413
14.1.9;ACKNOWLEDGEMENT;413
14.1.10;REFERENCES;413
14.1.11;DISCUSSION;415
14.2;CORONA-INDUCED DECOMPOSITION OF SF6;417
14.2.1;ABSTRACT;417
14.2.2;KEYWORDS;417
14.2.3;INTRODUCTION;417
14.2.4;MEASUREMENT METHOD;418
14.2.5;RESULTS AND DISCUSSION;419
14.2.6;CONCLUSIONS;421
14.2.7;ACKNOWLEDGEMENTS;422
14.2.8;REFERENCES;423
14.2.9;DISCUSSION;424
14.3;THERMAL DECOMPOSITION OF SFß AND SFfc-AIR MIXTURES IN SUBSTATION ENVIRONMENTS;425
14.3.1;ABSTRACT;425
14.3.2;KEYWORDS;425
14.3.3;INTRODUCTION;425
14.3.4;EXPERIMENTAL;426
14.3.5;RESULTS;428
14.3.6;DISCUSSION;431
14.3.7;CONCLUSION;431
14.3.8;ACKNOWLEDGEMENT;431
14.3.9;REFERENCES;432
14.3.10;DISCUSSION;433
14.4;IN VITRO TOXICITY SCREENING OF DIELECTRIC GASES USING MAMMALIAN CELLS;435
14.4.1;ABSTRACT;435
14.4.2;KEYWORDS;435
14.4.3;INTRODUCTION;435
14.4.4;MATERIALS AND METHODS;436
14.4.5;RESULTS AND DISCUSSION;437
14.4.6;REFERENCES;440
14.4.7;DISCUSSION;441
14.5;ON THE APPLICATION OF SHORT TERM BIOTESTS TO HEALTH RISK ANALYSIS OF FLUORINATED COMPOUNDS;442
14.5.1;ABSTRACT;442
14.5.2;KEYWORDS;442
14.5.3;INTRODUCTION;442
14.5.4;EXPERIMENTAL METHODS;443
14.5.5;RESULTS;443
14.5.6;DISCUSSION;444
14.5.7;REFERENCES;446
14.6;STUDY ON METAL FLUORIDE PRODUCTS FORMATION CAUSED BY THE ELECTRIC ARC IN SF6;448
14.6.1;ABSTRACT;448
14.6.2;KEYWORDS;448
14.6.3;INTRODUCTION;448
14.6.4;TEST RESULTS;449
14.6.5;DISCUSSION OF RESULTS;451
14.6.6;REFERENCES;453
15;CHAPTER 10. STANDARDS AND TESTING;454
15.1;A WIDEBAND DIGITAL CORRELATOR FOR PARTIAL DISCHARGE LOCATION IN GIS;454
15.1.1;ABSTRACT;454
15.1.2;KEYWORDS;454
15.1.3;INTRODUCTION;454
15.1.4;TECHNIQUES AND INSTRUMENTATION FOR PARTIAL DISCHARGE LOCATION;455
15.1.5;BASIC CORRELATOR OPERATION;456
15.1.6;PARTIAL DISCHARGE LOCATION WITH THE CORRELATOR;457
15.1.7;FREE CONDUCTING PARTICLES;458
15.1.8;PARTIAL DISCHARGE LOCATION IN SUBSTATIONS (CROSS-CORRELATION);458
15.1.9;REFERENCES;461
15.1.10;DISCUSSION;463
15.2;REMOTELY CONTROLLED SWITCHING OF HV SPARK GAPS WITH APPLICATION TO IMPULSE-SUPERIMPOSED AC TESTING;464
15.2.1;ABSTRACT;464
15.2.2;KEYWORDS;464
15.2.3;INTRODUCTION;464
15.2.4;HIGH VOLTAGE PULSE CIRCUIT;465
15.2.5;TRIGGERING CHARACTERISTICS;465
15.2.6;APPLICATION TO THE GENERATION OF COMBINED AC AND IMPULSE VOLTAGES;469
15.2.7;CONCLUSIONS;469
15.2.8;REFERENCES;470
15.3;FAST TRANSIENT OVERVOLTAGES IN GIS CAUSED BY THE OPERATION OF ISOLATORS;471
15.3.1;ABSTRACT;471
15.3.2;KEYWORDS;471
15.3.3;INTRODUCTION;471
15.3.4;TEST SETUP AND METHOD;472
15.3.5;TEST RESULTS AND CHARACTERISTICS OF FAST TRANSIENTS;473
15.3.6;COMPUTER ANALYSIS;475
15.3.7;IMPACT ON THE INSULATION COORDINATION OF GIS;476
15.3.8;CONCLUSIONS;478
15.3.9;REFERENCES;478
15.3.10;DISCUSSION;479
15.4;SELECTION OF H.V. TESTS OF SF6 INSULATED SYSTEMS FROM A PHYSICAL AND TECHNICAL VIEWPOINT;481
15.4.1;ABSTRACT;481
15.4.2;KEYWORDS;481
15.4.3;CLASSIFICATION OF DEFECTS IN GIS;481
15.4.4;DISCHARGE PROCESS OF DISTURBED FIELDS;482
15.4.5;H.V. TESTS AND TEST EQUIPMENT;485
15.4.6;CONCLUSION;487
15.4.7;ACKNOWLEDGEMENT;487
15.4.8;REFERENCES;487
15.4.9;DISCUSSION;488
16;CHAPTER 11. GAS-INSULATED EQUIPMENT;490
16.1;EXPERIENCES IN MAINTAINING THE QUALITY OF GAS INSULATED EQUIPMENT IN THE FIELD AND THEIR FEEDBACK TO THE DESIGN AND THE MANUFACTURING PROCESSES;490
16.1.1;ABSTRACT;490
16.1.2;KEYWORDS;490
16.1.3;INTRODUCTION;490
16.1.4;IMPROVEMENT OF RELIABILITY OF GAS INSULATED EQUIPMENT;491
16.1.5;EXPERIENCES IN THE INTERNAL INSPECTIONS OF GAS INSULATED EQUIPMENT;493
16.1.6;CONCLUSIONS;497
16.1.7;REFERENCES;497
16.1.8;DISCUSSION;498
16.2;EFFECT OF RESTRIKING SPARK ON DIELECTRIC STRENGTH TO GROUND IN A MODEL GAS INSULATED DISCONNECTING SWITCH;499
16.2.1;ABSTRACT;499
16.2.2;KEYWORDS;499
16.2.3;INTRODUCTION;499
16.2.4;MODEL GAP ARRANGEMENT;499
16.2.5;EXPERIMENTAL PROCEDURE;500
16.2.6;BREAKDOWN CHARACTERISTICS;500
16.2.7;DISCHARGE BEHAVIOR FROM RD TO BD;502
16.2.8;DISCUSSION;504
16.2.9;CONCLUSIONS;505
16.2.10;REFERENCES;505
16.2.11;DISCUSSION;506
16.3;77kV NEW TYPE ALL-IN-ONE SF, GAS-INSULATED SWITCHGEAR;507
16.3.1;ABSTRACT;507
16.3.2;KEYWORDS;507
16.3.3;INTRODUCTION;507
16.3.4;STUDY FOR BASIC SPECIFICATIONS;507
16.3.5;DESIGN FEATURES OF THE A-GIS;510
16.3.6;CONCLUSION;513
16.3.7;REFERENCES;513
16.3.8;ACKNOWLEDGEMENT;513
16.3.9;DISCUSSION;514
16.4;TRANSIENT BREAKDOWN IN SF6 GAS-IMPREGNATED POLYMER FILM STRUCTURES;515
16.4.1;ABSTRACT;515
16.4.2;KEYWORDS;515
16.4.3;INTRODUCTION;515
16.4.4;EXPERIMENTAL;516
16.4.5;RESULTS;516
16.4.6;CONCLUSIONS;520
16.4.7;ACKNOWLEDGEMENTS;521
16.4.8;REFERENCES;521
16.4.9;DISCUSSION;522
16.5;DEW POINTS OF SF6/N2 GAS MIXTURES;524
16.5.1;ABSTRACT;524
16.5.2;KEYWORDS;524
16.5.3;INTRODUCTION;525
16.5.4;EXPERIMENTAL;525
16.5.5;RESULTS AND DISCUSSION;525
16.5.6;CONCLUSIONS AND RECOMMENDATIONS;529
16.5.7;REFERENCES;529
16.5.8;DISCUSSION;530
16.6;PARTIAL DISCHARGE AND BREAKDOWN STUDIES IN MODEL GAS TRANSFORMER WINDINGS;532
16.6.1;ABSTRACT;532
16.6.2;KEYWORDS;532
16.6.3;INTRODUCTION;532
16.6.4;EXPERIMENTAL;532
16.6.5;RESULTS;533
16.6.6;CONCLUSIONS;536
16.6.7;ACKNOWLEDGEMENTS;536
16.6.8;REFERENCES;536
16.7;EFFECT OF GROUNDED ENCLOSURE ON THE FIELD DISTRIBUTION OF ROD-PLANE GAPS;537
16.7.1;ABSTRACT;537
16.7.2;KEY WORDS;537
16.7.3;INTRODUCTION;537
16.7.4;RESULTS AND DISCUSSION;538
16.7.5;CONCLUSIONS;539
16.7.6;ACKNOWLEDGEMENTS;540
16.7.7;REFERENCES;540
16.8;EXPERIMENTAL STUDY OF SF6 GAS-PRESSURIZED LAPPED-POLYPROPYLENE CABLE FOR EHV TRANSMISSION LINE;542
16.8.1;ABSTRACT;542
16.8.2;KEYWORDS;542
16.8.3;INTRODUCTION;542
16.8.4;INSULATING FILM;542
16.8.5;PARTIAL DISCHARGE CHARACTERISTIC;544
16.8.6;IMPULSE VOLTAGE CHARACTERISTIC;544
16.8.7;BENDING CHARACTERISTIC;546
16.8.8;275 KV CABLE;546
16.8.9;CONCLUSION;547
16.8.10;REFERENCES;547
16.9;SF6 THERMOPHYSICAL PROPERTIES: ENGINEERING APPROACH;548
16.9.1;INRODUCTION;548
16.9.2;THE STATE AND SATURATION EQUATIONS;549
16.9.3;THERMODYNAMICAL CHARACTERISTICS;551
16.9.4;CONCLUSION;557
16.9.5;REFERENCES;557
17;CHAPTER 12. FORUMS;560
17.1;FORUM I: GAS-INSULATED EQUIPMENT;560
17.2;FORUM II: REQUIREMENTS FOR INSULATING GASES;567
18;APPENDIX: SUMMARIES OF SMALL GROUP DISCUSSION MEETINGS;576
18.1;COMMENTS ON THE EFFECT OF ELECTRON DETACHMENT IN INITIATING BREAKDOWN IN GASEOUS DIELECTRICS;576
18.1.1;REFERENCES;577
18.2;INFORMAL DISCUSSION ON SITE TESTING AND RELIABILITY OF METALCLAD SUBSTATIONS;579
18.3;DISCUSSION ON CHARGING AND FLASHOVER OF INSULATORS IN COMPRESSED GASES;581
18.3.1;MEASUREMENT OF CHARGES IN INSULATORS;581
18.3.2;EFFECT OF CHARGES ON INSULATOR;581
18.3.3;FLASHOVER INITIATION;581
18.3.4;SURFACE FLASHOVER;582
19;LIST OF PARTICIPANTS;584
19.1;THIRD INTERNATIONAL SYMPOSIUM ON GASEOUS DIELECTRICS;584
20;PHOTOGRAPHS OF PARTICIPANTS;592
21;AUTHOR INDEX;598



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.