Bayesian Demand Forecasting and Customer Choice Modeling for Low Cost Carriers
E-Book, Englisch, 351 Seiten, eBook
ISBN: 978-3-8349-6184-6
Verlag: Betriebswirtschaftlicher Verlag Gabler
Format: PDF
Kopierschutz: 1 - PDF Watermark
Dr. Steffen Christ wrote his dissertation at the Institute of Statistics and Mathematical Economics of Prof. Dr. Robert Klein at the University of Augsburg.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;7
2;Acknowledgements;9
3;Contents;10
4;List of Figures;14
5;List of Tables;19
6;Nomenclature;21
7;Mathematical Nomenclature;23
8;Mathematical Notation;25
9;Part I Dynamic Pricing in the Airline Industry;26
9.1;Chapter 1 Introduction;27
9.1.1;1.1 The Passenger Airline Industry;27
9.1.2;1.2 The Low Cost Revolution;30
9.1.3;1.3 The Advent of Dynamic Pricing;35
9.2;Chapter 2 Motivation and Structure;38
9.2.1;2.1 Relevance of the Topic;38
9.2.2;2.2 Focus on the Airline Industry;41
9.2.3;2.3 Objective and Differentiation;42
9.2.4;2.4 Structure of Work;43
9.3;Chapter 3 Dynamic Pricing;45
9.3.1;3.1 Definition and Scope;45
9.3.1.1;3.1.1 Introduction to Pricing;45
9.3.1.2;3.1.2 Dynamic Pricing and Revenue Optimization;47
9.3.2;3.2 Literature Overview;53
9.3.2.1;3.2.1 Demand Learning Models;53
9.3.2.2;3.2.2 Non-learning Pricing Models;64
9.3.3;3.3 Limitations and Shortcomings;76
9.3.3.1;3.3.1 Dynamic Pricing Models;76
9.3.3.2;3.3.2 Demand Learning Models;78
9.3.4;3.4 Proposed Approach;80
10;Part II Forecasting Latent Demand;85
10.1;Part II Objective;86
10.2;Chapter 4 Self-Learning Linear Models;88
10.2.1;4.1 Linear Regression Models;89
10.2.2;4.2 Bayesian Statistics;100
10.2.2.1;4.2.1 Bayesian Probabilities;101
10.2.2.2;4.2.2 Bayesian Inference;104
10.2.3;4.3 Bayesian Linear Regression;106
10.2.3.1;4.3.1 Parameter Distribution;106
10.2.3.2;4.3.2 Predictive Distribution;110
10.2.4;4.4 Critique and Limitations;113
10.3;Chapter 5 Demand in Low Cost Markets;117
10.3.1;5.1 Experimental Data Set;117
10.3.1.1;5.1.1 Data Collection;118
10.3.1.2;5.1.2 Data Cleansing;121
10.3.2;5.2 Overarching Long-term Characteristics;123
10.3.2.1;5.2.1 Log-linear Demand Structure;124
10.3.2.2;5.2.2 Macro-Seasonalities and Trends;130
10.3.2.3;5.2.3 Similarities of Adjacent Flights;133
10.3.3;5.3 Short-term Characteristics;135
10.3.3.1;5.3.1 Time Series Disruption Through Outliers;136
10.3.3.2;5.3.2 Patterns Based on Departure Weekdays;141
10.3.3.3;5.3.3 Micro-Seasonalities along ObservationWeekdays;145
10.3.3.4;5.3.4 Cross-Effects of Departure and ObservationWeek-days;148
10.3.4;5.4 Implications for Forecasting Model;149
10.4;Chapter 6 The Demand Forecasting Model;151
10.4.1;6.1 Linear Basis Function Model;151
10.4.1.1;6.1.1 Indexing and Data Transformation;152
10.4.1.2;6.1.2 Driving Model Parameters;154
10.4.1.3;6.1.3 Model Specification and Re-transformation;158
10.4.1.4;6.1.4 Frequentist Coefficient Weights;160
10.4.2;6.2 Model Validation;161
10.4.2.1;6.2.1 Model and Coefficient Significance;162
10.4.2.2;6.2.2 Prerequisites and Assumptions;164
10.4.3;6.3 Bayesian Learning Mechanism;166
10.4.3.1;6.3.1 Online Demand Learning;167
10.4.3.2;6.3.2 Overarching Demand Structures and Prior De-mand Knowledge;173
10.5;Chapter 7 Computational Results and Evaluation;178
10.5.1;7.1 Performance of the Na¨ive Bayesian Scheme;178
10.5.1.1;7.1.1 Distribution Convergence Speed;178
10.5.1.2;7.1.2 Forecast Quality and Accuracy;183
10.5.2;7.2 Sensitivity of Forecast Accuracy;187
10.5.2.1;7.2.1 Improvement Through Informed Priors;188
10.5.2.2;7.2.2 Sizing of Learning window;191
10.5.2.3;7.2.3 Granularity of Forecasting Basis;197
10.5.2.4;7.2.4 Combined Effects;200
10.5.3;7.3 Recommended Approach;204
10.6;Chapter 8 Summary and Outlook;207
11;Part III Estimating Price Sensitivity;216
11.1;Part III Objective;217
11.2;Chapter 9 Discrete Customer Choice Analysis;219
11.2.1;9.1 Fundamentals of Choice Modeling;220
11.2.2;9.2 Elements of a Choice Decision Process;222
11.2.2.1;9.2.1 Decision Maker and its Characteristics;223
11.2.2.2;9.2.2 Choice Set;224
11.2.2.3;9.2.3 Alternative Attributes;225
11.2.2.4;9.2.4 Decision Rule;226
11.2.3;9.3 Individual Choice Behavior;227
11.2.3.1;9.3.1 Economic Utility-based Consumer Theory;227
11.2.3.2;9.3.2 Deterministic Choice Theory;229
11.2.3.3;9.3.3 Probabilistic Choice Theory;231
11.2.4;9.4 The Multinomial Logit Model;233
11.2.4.1;9.4.1 Description and Functional Form;234
11.2.4.2;9.4.2 Specific Properties and Limitations;236
11.2.4.3;9.4.3 Coefficient Estimation;240
11.2.4.4;9.4.4 Tests of Model Specifications;242
11.3;Chapter 10 Choice Situation in Low-Cost Markets;248
11.3.1;10.1 Experimental Data Set;248
11.3.2;10.2 Market Overview;253
11.3.2.1;10.2.1 Market Participants and Supply;253
11.3.2.2;10.2.2 Pricing Environment and Behavior;254
11.3.3;10.3 Observed Demand Behavior;258
11.3.3.1;10.3.1 Price Sensitivity;258
11.3.3.2;10.3.2 Schedule Preference;262
11.3.3.3;10.3.3 Booking Day Preference;264
11.3.4;10.4 Implications for Choice Model;265
11.4;Chapter 11 Multinomial Logit Model for Low-Cost Travel Choice;268
11.4.1;11.1 Modeling Constraints and Specifics;270
11.4.2;11.2 Model Building and Goodness of Fit;276
11.4.2.1;11.2.1 Internal Choice Drivers;277
11.4.2.2;11.2.2 Decision Maker Characteristics;283
11.4.2.3;11.2.3 External Outbound Choice Drivers;293
11.4.2.4;11.2.4 External Inbound Choice Drivers;309
11.5;Chapter 12 Computational Results and Evaluation;317
11.5.1;12.1 Predictive Model Performance;317
11.5.2;12.2 Choice Elasticities of Fare Changes;325
11.5.3;12.3 Applications to Dynamic Airfare Pric-ing;330
11.6;Chapter 13 Summary and Outlook;333
12;Appendix and Bibliography;341
12.1;Appendix;342
12.2;Bibliography;343