E-Book, Englisch, 320 Seiten, Web PDF
Reihe: IFAC Symposia Series
Chretien Automatic Control in Space 1985
1. Auflage 2014
ISBN: 978-1-4832-9861-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Tenth IFAC Symposium, Toulouse, France, 24-28 June 1985
E-Book, Englisch, 320 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9861-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Presents an authoritative overview of the recent developments and technical advances in the applications of automated control to space technology. Topics covered include: geostationary satellites, scientific satellites, flexible systems, low earth orbit satellites, orbit and trajectory control, component technology, platforms, rendez-vous and docking (RVD) and manipulators. Contains 39 research and review papers.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Automatic Control in Space 1985;4
3;Copyright Page;5
4;Table of Contents;8
5;PART 1: GEOSTATIONARY SATELLITES;12
5.1;CHAPTER 1. THE DESIGN OF THE FINE ANTENNA POINTING SYSTEM FOR ITALSAT;12
5.1.1;1. INTRODUCTION;12
5.1.2;2. ANTENNA POINTING SYSTEM DESCRIPTION;12
5.1.3;3. THE RF SENSOR DESIGN;14
5.1.4;4. AUTOTRACK LOOP DESIGN;17
5.1.5;5. MECHANISMS AND ANTENNA STRUCTURE DYNAMIC ASPECTS;18
5.2;CHAPTER 2. THE ATTITUDE DETERMINATION AND CONTROL SUBSYSTEM OF THE STC (SATELLITE TELEVISION CORPORATION) DIRECT BROADCAST SATELLITE;20
5.2.1;ABSTRACT;20
5.2.2;KEYWORDS;20
5.2.3;INTRODUCTION;20
5.2.4;CONCLUSION;27
5.2.5;REFERENCES;28
5.3;CHAPTER 3. CONTROL SYSTEM OF THE CHINESE GEOSTATIONARY EXPERIMENTAL COMMUNICATION SATELLITE AND ITS FLIGHT RESULTS;30
5.3.1;1 . INTRODUCTION;30
5.3.2;2. CONTROL SYSTEM CONFIGURATION AND MAIN FUNCTIONS;30
5.3.3;3.Flight Test Results;34
5.3.4;4. CONCLUSIONS;34
5.3.5;5. REFERENCES;34
5.4;CHAPTER 4. SOLAR SAILING ATTITUDE CONTROL OF LARGE GEOSTATIONARY SATELLITE;40
5.4.1;INTRODUCTION;40
5.4.2;SOLAR SAILING DESCRIPTION;41
5.4.3;SOLAR SAILING CONTROL LAWS;42
5.4.4;SUMMARY OF PERFORMANCES;43
5.4.5;CONCLUSION;43
5.5;CHAPTER 5. EVALUATION OF CONTROL CONCEPTS FOR A LARGE GEOSTATIONARY DATARELAY SATELLITE;44
5.5.1;INTRODUCTION;44
5.5.2;SATELLITE CONFIGURATION AND MODELLING;44
5.5.3;FLEXIBLE MODES ANALYSIS;47
5.5.4;CONTROL CONCEPTS ANALYSIS AND SELECTION;48
5.5.5;STUDY SYNTHESIS AND CONCLUSIONS;52
5.5.6;REFERENCES;53
6;PART 2: SCIENTIFIC SATELLITES;54
6.1;CHAPTER6. SPACE TELESCOPE ANTENNA POINTING SYSTEM ANALYSIS AND TEST;54
6.1.1;INTRODUCTION;54
6.1.2;SYSTEM DESCRIPTION;54
6.1.3;HARDWARE DESCRIPTION;55
6.1.4;DYNAMIC ANALYSIS;55
6.1.5;ANTENNA POINTING SYSTEM SERVO TEST;56
6.1.6;TEST SET UP;57
6.1.7;TEST RESULTS;58
6.1.8;CONCLUSIONS;58
6.1.9;REFERENCES;58
6.2;CHAPTER 7. AUTOMATED STAR PATTERN RECOGNITION FOR USE WITH THE SPACE INFRARED TELESCOPE FACILITY (SIRTF);60
6.2.1;INTRODUCTION;60
6.2.2;STAR PATTERN UNIQUENESS;61
6.2.3;ACQUISITION METHODS;63
6.2.4;MONTE CARLO SIMULATIONS;66
6.2.5;SIMULATION RESULTS AND COMPARISON OF ACQUISITION METHODS;67
6.2.6;CONCLUSIONS;68
6.2.7;REFERENCES;68
6.3;CHAPTER 8. ON-GROUND ATTITUDE RECONSTITUTION FOR HIPPARCOS SATELLITE;70
6.3.1;PRESENTATION OF THE MISSION HIPPARCOS;70
6.3.2;ON-GROUND ATTITÜDE RECONSTITUTION (OGAR) REQUIREMENTS;71
6.3.3;ESTIMATOR DESIGN;71
6.3.4;OGAR PERFORMANCE ASSESSMENT;74
6.3.5;CONCLUSION;76
6.3.6;REFERENCE;76
6.4;CHAPTER 9. FAULT TOLERANT ONBOARD IMPLEMENTATION OF CONTROL PROCEDURES IN TETHERED SATELLITE;78
6.4.1;SAFETY REQUIREMENTS;78
6.4.2;ATTITUDE MEASUREMENT AND CONTROL REQUIREMENTS;78
6.4.3;DATA MANAGEMENT REQUIREMENTS;79
6.4.4;SPACECRAFT CONTROL REQUIREMENTS;79
6.4.5;ARCHITECTURAL TRADE OFF;79
6.4.6;CENTRAL CONTROL UNIT ANALYSIS AND DESCRIPTION OF DH FUNCTIONS WITH RELATED PROBLEMS;79
6.4.7;COMMANDS MANAGEME;80
6.4.8;CONTROL OF THE SUBSYSTEMS WHICH CONSTITUTE THE SATELLITE;80
6.4.9;SAFETY MANAGEMENT;81
6.4.10;MONITORING OF THE SATELLITE STATUS TO ORBITER AND CREW;81
6.4.11;DATA HANDLING AND AMCS MICROPROCESSORS;81
6.4.12;FUNCTIONS OF AMCS AND RELATED ASPECTS;82
6.4.13;FAULT TOLERANCE IN A NON DUPLICATED SYSTEM;84
6.4.14;CONCLUSIONS;85
6.4.15;REFERENCES;85
6.5;CHAPTER 10. IRAS REVISITED;86
6.5.1;INTRODUCTION;86
6.5.2;IRAS-REVISITED EXPERIMENTS;89
6.5.3;IMPLEMENTATION OF EXPERIMENTS;90
6.5.4;SOFTWARE DEVELOPMENT;91
6.5.5;CONCLUSIONS;92
6.5.6;REFERENCES;92
6.6;CHAPTER 11. THE GALILEO ATTITUDE AND ARTICULATION CONTROL SYSTEM: A RADIATION-HARD, HIGH PRECISION, STATE-OF-THE-ART CONTROL SYSTEM;94
6.6.1;THE GALILEO MISSION;94
6.6.2;THE GALILEO SPACECRAFT;95
6.6.3;THE ATTITUDE AND ARTICULATION CONTROL SYSTEM CONTROL;97
6.6.4;DESIGN AND IMPLEMENTATION OF THE SYSTEM;98
6.6.5;THE RADIATION PROBLEM;99
6.6.6;SYSTEM INTEGRATION ANO TEST STATUS;100
6.6.7;SUMMARY;100
6.6.8;ACKNOWLEDGEMENTS;100
6.6.9;REFERENCES;100
7;PART 3: LOW EARTH ORBIT SATELLITES;102
7.1;CHAPTER 12. IMPROVED DUAL SPIN TURN ATTITUDE ACQUISITION FOR MOMENTUM BIASED 3-AXIALLY STABILIZED SPACECRAFT;102
7.1.1;1. INTRODUCTION;102
7.1.2;2. OPERATION OF THE IMPROVEDDUAL SPIN TURN;102
7.1.3;3. MATHEMATICAL ANALYSIS ON THE IMPROVED DUAL SPIN TURN;103
7.1.4;4. GEOMETRICAL ANALYSIS OF THE IMPROVED DUAL SPIN TURN FOR THE POST-INITIAL PHASE;104
7.1.5;5. COMPUTER SIMULATION RESULTS;106
7.1.6;6. CONCLUSION;106
7.1.7;REFERENCES;106
7.2;CHAPTER 13. ATTITUDE CONTROL SYSTEM OF POLARORBITAL METEOROLOGICAL SATELLITE;108
7.2.1;INTRODUCTION;108
7.2.2;CONTROL LOGIC IN ACQUISITION MODE;109
7.2.3;WHEEL CONTROL MODE;110
7.2.4;CONCLUSION;111
7.3;CHAPTER 14. ADAPTATION OF THE OLYMPUS AOCS FOR USE IN LOW EARTH ORBIT;114
7.3.1;INTRODUCTION;114
7.3.2;OLYMPUS MISSION;114
7.3.3;OLYMPUS AOCS;115
7.3.4;LOW EARTH ORBIT MISSION;116
7.3.5;LOW EARTH ORBIT AOCS REQUIREMENTS;116
7.3.6;RADARSAT MISSION;117
7.3.7;RADARSAT AOCS;117
7.3.8;ADAPTATION TO OTHER LEO MISSIONS;119
7.3.9;CONCLUSION;119
7.3.10;ACKNOWLEDGEMENTS;119
7.3.11;REFERENCES;119
7.4;CHAPTER 15. MARINE OBSERVATION SATELLITE: ITS DEVELOPMENT AND SUPPORT SOFTWARE;122
7.4.1;INTRODUCTION;122
7.4.2;OUTLINE OF MOS-1;122
7.4.3;MOS-1 GROUND SEGMENT;125
7.4.4;MOS-1 SUPPORT SOFTWARE;125
7.4.5;CONCLUSION AND ACKNOWLEDGEMENT;129
7.4.6;REFERENCES;129
7.5;CHAPTER 16. ROUND TABLE DISCUSSION ON PASSIVE VERSUS ACTIVE DAMPING;130
8;PART 4: FLEXIBLE SYSTEMS;132
8.1;CHAPTER 17. MODAL DAMPING MEASUREMENT OF MOS-1 SOLAR ARRAY PADDLE;132
8.1.1;INTRODUCTION;132
8.1.2;TEST CONFIGURATION;133
8.1.3;DATA ACQUISITION AND PROCESSING;134
8.1.4;TEST RESULTS AND MISSION PREDICTION;134
8.1.5;CONCLUSIONS;136
8.1.6;ACKNOWLEDGMENTS;136
8.1.7;REFERENCES;136
8.2;CHAPTER 18. MATHEMATICAL MODELS OF FLEXIBLE SPACECRAFT DYNAMICS: A SURVEY OF ORDER REDUCTION APPROACHES;138
8.2.1;INTRODUCTION;138
8.2.2;SYSTEM ANALYSIS;138
8.2.3;BASIC REDUCTION APPROACHES;140
8.2.4;APPLICATION;143
8.2.5;SUMMARY AND CONCLUSIONS;144
8.2.6;ACKNOWLEDGEMENT;144
8.2.7;REFERENCES;144
8.3;CHAPTER 19. A MODAL REDUCTION METHOD FOR NONLINEAR SIMULATION OF FLEXIBLE SPACECRAFT;148
8.3.1;INTRODUCTION;148
8.3.2;AUGMENTED BODY METHOD;149
8.3.3;ONE-DIMENSIONAL EXAMPLE;149
8.3.4;GALILEO RESULTS AND SYSTEM DAMPING;152
8.3.5;SUMMARY AND CONCLUSIONS;154
8.3.6;ACKNOWLEDGEMENT;154
8.3.7;REFERENCES;154
8.4;CHAPTER 20. ON CONTROL OF TETHERED SATELLITE SYSTEMS;156
8.4.1;INTRODUCTION;156
8.4.2;CONTROL BASED ON A DYNAMICAL MODEL INVOLVING ONLY ROTATIONS;157
8.4.3;INCLUSION OF LONGITUDINAL VIBRATIONS IN DYNAMICAL MODEL;158
8.4.4;INCLUSION OF TRANSVERSE VIBRATIONS IN DYNAMICAL MODEL;158
8.4.5;CONCLUDING REMARKS;159
8.4.6;REFERENCES;159
8.5;CHAPTER 21. DESIGN-TO-PERFORMANCE;164
8.5.1;INTRODUCTION;164
8.5.2;CURRENT DESIGN PHILOSOPHY;164
8.5.3;DESIGN TO PERFORMANCE STRATEGY;164
8.5.4;IMPLEMENTATION OF "DESIGN TO PERFORMANCE";165
8.5.5;EXAMPLE;167
8.5.6;CONCLUSION;168
8.5.7;REFERENCES;168
8.6;CHAPTER 22. APPLICATION OF ADAPTIVE OBSERVERS TO THE CONTROL OF FLEXIBLE SPACECRAFT;178
8.6.1;INTRODUCTION;178
8.6.2;SPACECRAFT MODEL AND DATA;178
8.6.3;BACKGROUND;179
8.6.4;SIMULATION RESULTS;181
8.6.5;DISCUSSION;182
8.6.6;CONCLUSION;182
8.6.7;ACKNOWLEDGEMENT;182
8.6.8;REFERENCES;182
8.7;CHAPTER 23. ATTITUDE AND ORBIT CONTROL FOR THE AMPTE-UKS: EARLY INFLIGHT PERFORMANCE;186
8.7.1;1. THE MISSION;186
8.7.2;2. THE GROUND STATION;187
8.7.3;3. THE UK SUBSATELLITE;188
8.7.4;4. THE LAUNCH;189
8.7.5;5. THE SPIN-AXIS ERECTION MANOEUVRE;189
8.7.6;6. SPIN MANOEUVRES;191
8.7.7;7. ORBIT MANOEUVRES;192
8.7.8;8. CONCLUSIONS;192
8.7.9;9. REFERENCES;192
8.8;CHAPTER 24. AUTONOMOUS SATELLITE NAVIGATION USING OPTICO-INERTIAL INSTRUMENTS;194
8.8.1;ABSTRACT;194
8.8.2;KEYWORDS;194
8.8.3;INTRODUCTION;194
8.8.4;EXTENDED KALMAN FILTER - SIMULATION PROCEDURE;194
8.8.5;AUTONOMOUS NAVIGATION USING A STELLAR REFRACTION MEASUREMENT;195
8.8.6;APPLICABILITY TO GEOSTATIONARY MISSIONS;196
8.8.7;APPLICABILITY TO LOW ORBITS;197
8.8.8;MEASUREMENTS BY LANDMARKS RECOGNITIONS;197
8.8.9;CONCLUSION;199
8.8.10;REFERENCES;199
8.9;CHAPTER 25. EXPLICIT VG GUIDANCE ALGORITHM FOR A SOLID POWERED CLOSED LOOP GUIDANCE MISSION;200
8.9.1;NOMENCLATURE;200
8.9.2;INTRODUCTION;201
8.9.3;GUIDANCE ALGORITHM FOR ASLV;201
8.9.4;SIMULATION RESULTS;203
8.9.5;CONCLUSIONS;203
8.9.6;REFERENCES;203
8.10;CHAPTER 26. FORMULATION OF A MULTI-RATE KALMAN FILTER AND ITS APPLICATION TO THE NAVIGATION OF A WINGED VEHICLE;208
8.10.1;1. INTRODUCTION;208
8.10.2;2. OUTLINE OF NAVIGATION SYSTEM;208
8.10.3;3. KALMAN FILTER SYSTEM;209
8.10.4;4. SIMULATION;213
8.10.5;5. CONCLUSION;213
8.10.6;REFERENCES;214
8.11;CHAPTER 27. OPTIMUM STRATEGY FOR INJECTION MANEUVERS IN LUNAR DOUBLE SWING-BY MISSIONS;216
8.11.1;1. Introduction;216
8.11.2;2. Injection Manever and Transfer Orbit;216
8.11.3;3. Mathematical Description of Orbits and Maneuvers;217
8.11.4;4. Analysis;219
8.11.5;5. Conclusion;220
8.11.6;References;220
8.12;CHAPTER 28. NEW INTEGRATION SCHEME OF GPS-INS HYBRID NAVIGATION SYSTEM FOR MANEUVERING SPACECRAFT;222
8.12.1;INTRODUCTION;222
8.12.2;DESCRIPTION OF NEW INTEGRATION SCHEME;222
8.12.3;THEORETICAL ANALYSIS OF NEW INTEGRATION SCHEME;225
8.12.4;SIMULATION RESULTS;226
8.12.5;APPLICABILITY OF THE PRESENTSCHEME;228
8.12.6;CONCLUSIONS;228
8.12.7;REFERENCES;228
9;PART 5: COMPONENT TECHNOLOGY;230
9.1;CHAPTER 29. PERFORMANCE CHARACTERIZATION OF THE HUBBLE SPACE TELESCOPE RATE GYRO ASSEMBLY1;230
9.1.1;INTRODUCTION;230
9.1.2;RATE GYRO ASSEMBLY DESCRIPTION;230
9.1.3;PERFORMANCE CHARACTERIZATION METHODOLOGY FOR THE ST/RGA;231
9.1.4;DETAILED PERFORMANCE CHARACTERIZATION;231
9.1.5;ATTITYUE REFERENCE STABILITY CHARACTERIZATION;232
9.1.6;NOISE;232
9.1.7;SCALE FACTOR LINEARITY AND STABILITY;232
9.1.8;STABILITY OF ST/RGA MECHANICAL
ALIGNMENT;233
9.1.9;CONCLUSIONS;233
9.1.10;REFERENCES;233
9.2;CHAPTER 30. IN-FLIGHT CALIBRATION METHOD OF INSTRUMENT MISALIGNMENT OF AN ASTRONOMY SATELLITE;234
9.2.1;1. INTRODUCTION;234
9.2.2;2. ATTITUDE DETERMINATION SYSTEM OF ASTRO-C;234
9.2.3;3. ATTITUDE DETERMINATION AND BIAS ERROR ESTIMATION;235
9.2.4;4. IN-FLIGHT MISALIGNMENT CALIBRATION AND COMPENSATION SCHEME;237
9.2.5;5. SENSITIVITY ANALYSIS AND SIMULATION OF THE CALIBRATION;238
9.2.6;6. CONCLUSION;239
9.2.7;REFERENCE;239
9.3;CHAPTER 31. CCD IMAGING SENSOR;242
9.3.1;1 - INTRODUCTION : VARIOUS APPLICATION OF CCD OPTICAL SENSORS;242
9.3.2;2 - ABOUT THE CCD–MATRIX DETECTOR;243
9.3.3;3 - MAIN PERFORMANCES OF MULTI-PURPOSE CCD SENSUR;243
9.3.4;4 - DESCRIPTION OF THE DESIGN;244
9.3.5;5 - DESCRIPTION OF THE EVALUATION BENCH OF THE SIS;246
9.3.6;6 - ALGORITEMIC TREATMENT;247
9.3.7;7 - CONCUJSION;249
9.4;CHAPTER 32. DEVELOPMENT OF AN ADVANCED HYBRID CONTROL SYSTEM FOR A CRYOGENIC SPECTROMETER;250
9.4.1;INTRODUCTION;250
9.4.2;PROBLEM DESCRIPTION;250
9.4.3;ACTUATOR CONCEPT;251
9.4.4;ETALON CONTROL SYSTEM CONCEPT;254
9.4.5;CONTROL LOGIC;255
9.4.6;CONTROL SYSTEM IMPLEMENTATION;256
9.4.7;CRYOGENIC-VACUUM PERFORMANCE TESTING;257
9.4.8;CONCLUSIONS;261
9.4.9;REFERENCES;261
9.5;CHAPTER 33. A NEW STEERING LAW OF A SINGLEGIMBAL CMG SYSTEM OF PYRAMID CONFIGURATION;262
9.5.1;INTRODUCTION;262
9.5.2;APPLICATION FOR BALLOON-BORNE SYSTEMS;262
9.5.3;PYRAMID TYPE CMG SYSTEM;262
9.5.4;ELLIPTIC TYPE SINGULAR STATE;263
9.5.5;STEERING LAW;263
9.5.6;SIMULATION RESULTS;264
9.5.7;CONCLUSION;265
9.5.8;REFERENCES;265
9.5.9;LIST OF FIGURES;265
10;PART 6: INVITED PAPER;270
10.1;CHAPTER 34. THE SPACE SHUTTLE;270
11;PART 7: PLATFORMS, RVD AND MANIPULATORS;274
11.1;CHAPTER 35. A FREE-FLYING POWER PLANT FOR A MANNED SPACE STATION;274
11.1.1;INTRODUCTION;274
11.1.2;THE EQUATIONS OF MOTION;274
11.1.3;THE CONTROL LAW;276
11.1.4;ROBUSTNESS OF THE CONTROL LAW;276
11.1.5;OPTICAL ATTITUDE AND POSITION DETERMINATION;277
11.1.6;SIMULATION RESULTS;277
11.1.7;POWER TRANSMISSION OPTIONS;278
11.1.8;SUMMARY;279
11.1.9;SYMBOLS;279
11.1.10;ACKNOWLEDGEMENT;279
11.1.11;REFERENCES;279
11.2;CHAPTER 36. MODELLING AND SIMULATION OF DISTRIBUTED FLEXIBILITY IN A SPACEBORNE MANIPULATOR;280
11.2.1;INTRODUCTION;280
11.2.2;CONSIDERATION OF DISTRIBUTED FLEXIBILITY IN THE DYNAMICS;280
11.2.3;PRACTICAL USE OF THE FICTITIOUS JOINTS APPROACH;283
11.2.4;CONCLUSION;288
11.2.5;REFERENCES;288
11.3;CHAPTER 37. FEASIBILITY OF TIME DELAY COMPENSATION FOR A SPAC ETELEOPERATION TASK;290
11.3.1;I INTRODUCTION;290
11.3.2;II SYSTEM ANALYSIS;291
11.3.3;Ill TIME DELAY COMPENSATION;292
11.3.4;IV LABORATORY EXPERIMENTS;295
11.3.5;V CONCLUSION;296
11.3.6;REFERENCES;296
11.4;CHAPTER 38. CONTROL TECHNIQUES FOR RENDEZ-VOUS AND DOCKING;298
11.4.1;1- MISSION CONSTRAINTS AND SCENARII;298
11.4.2;2- CANDIDATE SCENARII;299
11.4.3;3- CONTROLS;300
11.4.4;4- CONCLUSION;303
11.4.5;5- ACKNOWLEDGMENT;305
11.4.6;6- REFERENCES;305
11.5;CHAPTER 39. CONTROL OF IN-ORBIT SPACE MANIPULATION;306
11.5.1;ABSTRACT;306
11.5.2;1 INTRODUCTION;306
11.5.3;2 SPACE MANIPULATOR APPLICATIONS;306
11.5.4;3 - MANIPULATION MOTIONS;307
11.5.5;4 - SPACE CONSTEAINTS;307
11.5.6;5 - MAN LOCATION - MAN MAC3IINE TASK SHARING;308
11.5.7;6 SPACE MANIPULATOR CONTROL DESIGN;308
11.5.8;7 - CONTROL ARCHITECTURE AND MODES;308
11.5.9;8 - SENSORY FUNCTIONS;310
11.5.10;9 - SPACE MANIPULATOR DYNAMICS;310
11.5.11;10 - DESIGN, VALIDATION AND CONTROL SOFTWARES;312
11.5.12;11 - COJMCLUSION;313
11.6;CHAPTER 40. CONTROL ASPECTS OF A EUROPEAN SPACE MANIPULATOR SYSTEM;314
11.6.1;INTRODUCTION;314
11.6.2;CONTROL ELEMENTS;316
11.6.3;ON-BOARD IMPLEMENTATION;319
11.6.4;COMPARISON WITH SHUTTLE RMS;319
11.6.5;CONCLUDING REMARKS;320
11.6.6;REFERENCES;320
12;SUBJECT INDEX;324
13;AUTHOR INDEX;322