Chretien | Automatic Control in Space 1985 | E-Book | sack.de
E-Book

E-Book, Englisch, 320 Seiten, Web PDF

Reihe: IFAC Symposia Series

Chretien Automatic Control in Space 1985

Proceedings of the Tenth IFAC Symposium, Toulouse, France, 24-28 June 1985
1. Auflage 2014
ISBN: 978-1-4832-9861-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Tenth IFAC Symposium, Toulouse, France, 24-28 June 1985

E-Book, Englisch, 320 Seiten, Web PDF

Reihe: IFAC Symposia Series

ISBN: 978-1-4832-9861-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Presents an authoritative overview of the recent developments and technical advances in the applications of automated control to space technology. Topics covered include: geostationary satellites, scientific satellites, flexible systems, low earth orbit satellites, orbit and trajectory control, component technology, platforms, rendez-vous and docking (RVD) and manipulators. Contains 39 research and review papers.

Chretien Automatic Control in Space 1985 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Automatic Control in Space 1985;4
3;Copyright Page;5
4;Table of Contents;8
5;PART 1: GEOSTATIONARY SATELLITES;12
5.1;CHAPTER 1. THE DESIGN OF THE FINE ANTENNA POINTING SYSTEM FOR ITALSAT;12
5.1.1;1. INTRODUCTION;12
5.1.2;2. ANTENNA POINTING SYSTEM DESCRIPTION;12
5.1.3;3. THE RF SENSOR DESIGN;14
5.1.4;4. AUTOTRACK LOOP DESIGN;17
5.1.5;5. MECHANISMS AND ANTENNA STRUCTURE DYNAMIC ASPECTS;18
5.2;CHAPTER 2. THE ATTITUDE DETERMINATION AND CONTROL SUBSYSTEM OF THE STC (SATELLITE TELEVISION CORPORATION) DIRECT BROADCAST SATELLITE;20
5.2.1;ABSTRACT;20
5.2.2;KEYWORDS;20
5.2.3;INTRODUCTION;20
5.2.4;CONCLUSION;27
5.2.5;REFERENCES;28
5.3;CHAPTER 3. CONTROL SYSTEM OF THE CHINESE GEOSTATIONARY EXPERIMENTAL COMMUNICATION SATELLITE AND ITS FLIGHT RESULTS;30
5.3.1;1 . INTRODUCTION;30
5.3.2;2. CONTROL SYSTEM CONFIGURATION AND MAIN FUNCTIONS;30
5.3.3;3.Flight Test Results;34
5.3.4;4. CONCLUSIONS;34
5.3.5;5. REFERENCES;34
5.4;CHAPTER 4. SOLAR SAILING ATTITUDE CONTROL OF LARGE GEOSTATIONARY SATELLITE;40
5.4.1;INTRODUCTION;40
5.4.2;SOLAR SAILING DESCRIPTION;41
5.4.3;SOLAR SAILING CONTROL LAWS;42
5.4.4;SUMMARY OF PERFORMANCES;43
5.4.5;CONCLUSION;43
5.5;CHAPTER 5. EVALUATION OF CONTROL CONCEPTS FOR A LARGE GEOSTATIONARY DATARELAY SATELLITE;44
5.5.1;INTRODUCTION;44
5.5.2;SATELLITE CONFIGURATION AND MODELLING;44
5.5.3;FLEXIBLE MODES ANALYSIS;47
5.5.4;CONTROL CONCEPTS ANALYSIS AND SELECTION;48
5.5.5;STUDY SYNTHESIS AND CONCLUSIONS;52
5.5.6;REFERENCES;53
6;PART 2: SCIENTIFIC SATELLITES;54
6.1;CHAPTER6. SPACE TELESCOPE ANTENNA POINTING SYSTEM ANALYSIS AND TEST;54
6.1.1;INTRODUCTION;54
6.1.2;SYSTEM DESCRIPTION;54
6.1.3;HARDWARE DESCRIPTION;55
6.1.4;DYNAMIC ANALYSIS;55
6.1.5;ANTENNA POINTING SYSTEM SERVO TEST;56
6.1.6;TEST SET UP;57
6.1.7;TEST RESULTS;58
6.1.8;CONCLUSIONS;58
6.1.9;REFERENCES;58
6.2;CHAPTER 7. AUTOMATED STAR PATTERN RECOGNITION FOR USE WITH THE SPACE INFRARED TELESCOPE FACILITY (SIRTF);60
6.2.1;INTRODUCTION;60
6.2.2;STAR PATTERN UNIQUENESS;61
6.2.3;ACQUISITION METHODS;63
6.2.4;MONTE CARLO SIMULATIONS;66
6.2.5;SIMULATION RESULTS AND COMPARISON OF ACQUISITION METHODS;67
6.2.6;CONCLUSIONS;68
6.2.7;REFERENCES;68
6.3;CHAPTER 8. ON-GROUND ATTITUDE RECONSTITUTION FOR HIPPARCOS SATELLITE;70
6.3.1;PRESENTATION OF THE MISSION HIPPARCOS;70
6.3.2;ON-GROUND ATTITÜDE RECONSTITUTION (OGAR) REQUIREMENTS;71
6.3.3;ESTIMATOR DESIGN;71
6.3.4;OGAR PERFORMANCE ASSESSMENT;74
6.3.5;CONCLUSION;76
6.3.6;REFERENCE;76
6.4;CHAPTER 9. FAULT TOLERANT ONBOARD IMPLEMENTATION OF CONTROL PROCEDURES IN TETHERED SATELLITE;78
6.4.1;SAFETY REQUIREMENTS;78
6.4.2;ATTITUDE MEASUREMENT AND CONTROL REQUIREMENTS;78
6.4.3;DATA MANAGEMENT REQUIREMENTS;79
6.4.4;SPACECRAFT CONTROL REQUIREMENTS;79
6.4.5;ARCHITECTURAL TRADE OFF;79
6.4.6;CENTRAL CONTROL UNIT ANALYSIS AND DESCRIPTION OF DH FUNCTIONS WITH RELATED PROBLEMS;79
6.4.7;COMMANDS MANAGEME;80
6.4.8;CONTROL OF THE SUBSYSTEMS WHICH CONSTITUTE THE SATELLITE;80
6.4.9;SAFETY MANAGEMENT;81
6.4.10;MONITORING OF THE SATELLITE STATUS TO ORBITER AND CREW;81
6.4.11;DATA HANDLING AND AMCS MICROPROCESSORS;81
6.4.12;FUNCTIONS OF AMCS AND RELATED ASPECTS;82
6.4.13;FAULT TOLERANCE IN A NON DUPLICATED SYSTEM;84
6.4.14;CONCLUSIONS;85
6.4.15;REFERENCES;85
6.5;CHAPTER 10. IRAS REVISITED;86
6.5.1;INTRODUCTION;86
6.5.2;IRAS-REVISITED EXPERIMENTS;89
6.5.3;IMPLEMENTATION OF EXPERIMENTS;90
6.5.4;SOFTWARE DEVELOPMENT;91
6.5.5;CONCLUSIONS;92
6.5.6;REFERENCES;92
6.6;CHAPTER 11. THE GALILEO ATTITUDE AND ARTICULATION CONTROL SYSTEM: A RADIATION-HARD, HIGH PRECISION, STATE-OF-THE-ART CONTROL SYSTEM;94
6.6.1;THE GALILEO MISSION;94
6.6.2;THE GALILEO SPACECRAFT;95
6.6.3;THE ATTITUDE AND ARTICULATION CONTROL SYSTEM CONTROL;97
6.6.4;DESIGN AND IMPLEMENTATION OF THE SYSTEM;98
6.6.5;THE RADIATION PROBLEM;99
6.6.6;SYSTEM INTEGRATION ANO TEST STATUS;100
6.6.7;SUMMARY;100
6.6.8;ACKNOWLEDGEMENTS;100
6.6.9;REFERENCES;100
7;PART 3: LOW EARTH ORBIT SATELLITES;102
7.1;CHAPTER 12. IMPROVED DUAL SPIN TURN ATTITUDE ACQUISITION FOR MOMENTUM BIASED 3-AXIALLY STABILIZED SPACECRAFT;102
7.1.1;1. INTRODUCTION;102
7.1.2;2. OPERATION OF THE IMPROVEDDUAL SPIN TURN;102
7.1.3;3. MATHEMATICAL ANALYSIS ON THE IMPROVED DUAL SPIN TURN;103
7.1.4;4. GEOMETRICAL ANALYSIS OF THE IMPROVED DUAL SPIN TURN FOR THE POST-INITIAL PHASE;104
7.1.5;5. COMPUTER SIMULATION RESULTS;106
7.1.6;6. CONCLUSION;106
7.1.7;REFERENCES;106
7.2;CHAPTER 13. ATTITUDE CONTROL SYSTEM OF POLARORBITAL METEOROLOGICAL SATELLITE;108
7.2.1;INTRODUCTION;108
7.2.2;CONTROL LOGIC IN ACQUISITION MODE;109
7.2.3;WHEEL CONTROL MODE;110
7.2.4;CONCLUSION;111
7.3;CHAPTER 14. ADAPTATION OF THE OLYMPUS AOCS FOR USE IN LOW EARTH ORBIT;114
7.3.1;INTRODUCTION;114
7.3.2;OLYMPUS MISSION;114
7.3.3;OLYMPUS AOCS;115
7.3.4;LOW EARTH ORBIT MISSION;116
7.3.5;LOW EARTH ORBIT AOCS REQUIREMENTS;116
7.3.6;RADARSAT MISSION;117
7.3.7;RADARSAT AOCS;117
7.3.8;ADAPTATION TO OTHER LEO MISSIONS;119
7.3.9;CONCLUSION;119
7.3.10;ACKNOWLEDGEMENTS;119
7.3.11;REFERENCES;119
7.4;CHAPTER 15. MARINE OBSERVATION SATELLITE: ITS DEVELOPMENT AND SUPPORT SOFTWARE;122
7.4.1;INTRODUCTION;122
7.4.2;OUTLINE OF MOS-1;122
7.4.3;MOS-1 GROUND SEGMENT;125
7.4.4;MOS-1 SUPPORT SOFTWARE;125
7.4.5;CONCLUSION AND ACKNOWLEDGEMENT;129
7.4.6;REFERENCES;129
7.5;CHAPTER 16. ROUND TABLE DISCUSSION ON PASSIVE VERSUS ACTIVE DAMPING;130
8;PART 4: FLEXIBLE SYSTEMS;132
8.1;CHAPTER 17. MODAL DAMPING MEASUREMENT OF MOS-1 SOLAR ARRAY PADDLE;132
8.1.1;INTRODUCTION;132
8.1.2;TEST CONFIGURATION;133
8.1.3;DATA ACQUISITION AND PROCESSING;134
8.1.4;TEST RESULTS AND MISSION PREDICTION;134
8.1.5;CONCLUSIONS;136
8.1.6;ACKNOWLEDGMENTS;136
8.1.7;REFERENCES;136
8.2;CHAPTER 18. MATHEMATICAL MODELS OF FLEXIBLE SPACECRAFT DYNAMICS: A SURVEY OF ORDER REDUCTION APPROACHES;138
8.2.1;INTRODUCTION;138
8.2.2;SYSTEM ANALYSIS;138
8.2.3;BASIC REDUCTION APPROACHES;140
8.2.4;APPLICATION;143
8.2.5;SUMMARY AND CONCLUSIONS;144
8.2.6;ACKNOWLEDGEMENT;144
8.2.7;REFERENCES;144
8.3;CHAPTER 19. A MODAL REDUCTION METHOD FOR NONLINEAR SIMULATION OF FLEXIBLE SPACECRAFT;148
8.3.1;INTRODUCTION;148
8.3.2;AUGMENTED BODY METHOD;149
8.3.3;ONE-DIMENSIONAL EXAMPLE;149
8.3.4;GALILEO RESULTS AND SYSTEM DAMPING;152
8.3.5;SUMMARY AND CONCLUSIONS;154
8.3.6;ACKNOWLEDGEMENT;154
8.3.7;REFERENCES;154
8.4;CHAPTER 20. ON CONTROL OF TETHERED SATELLITE SYSTEMS;156
8.4.1;INTRODUCTION;156
8.4.2;CONTROL BASED ON A DYNAMICAL MODEL INVOLVING ONLY ROTATIONS;157
8.4.3;INCLUSION OF LONGITUDINAL VIBRATIONS IN DYNAMICAL MODEL;158
8.4.4;INCLUSION OF TRANSVERSE VIBRATIONS IN DYNAMICAL MODEL;158
8.4.5;CONCLUDING REMARKS;159
8.4.6;REFERENCES;159
8.5;CHAPTER 21. DESIGN-TO-PERFORMANCE;164
8.5.1;INTRODUCTION;164
8.5.2;CURRENT DESIGN PHILOSOPHY;164
8.5.3;DESIGN TO PERFORMANCE STRATEGY;164
8.5.4;IMPLEMENTATION OF "DESIGN TO PERFORMANCE";165
8.5.5;EXAMPLE;167
8.5.6;CONCLUSION;168
8.5.7;REFERENCES;168
8.6;CHAPTER 22. APPLICATION OF ADAPTIVE OBSERVERS TO THE CONTROL OF FLEXIBLE SPACECRAFT;178
8.6.1;INTRODUCTION;178
8.6.2;SPACECRAFT MODEL AND DATA;178
8.6.3;BACKGROUND;179
8.6.4;SIMULATION RESULTS;181
8.6.5;DISCUSSION;182
8.6.6;CONCLUSION;182
8.6.7;ACKNOWLEDGEMENT;182
8.6.8;REFERENCES;182
8.7;CHAPTER 23. ATTITUDE AND ORBIT CONTROL FOR THE AMPTE-UKS: EARLY INFLIGHT PERFORMANCE;186
8.7.1;1. THE MISSION;186
8.7.2;2. THE GROUND STATION;187
8.7.3;3. THE UK SUBSATELLITE;188
8.7.4;4. THE LAUNCH;189
8.7.5;5. THE SPIN-AXIS ERECTION MANOEUVRE;189
8.7.6;6. SPIN MANOEUVRES;191
8.7.7;7. ORBIT MANOEUVRES;192
8.7.8;8. CONCLUSIONS;192
8.7.9;9. REFERENCES;192
8.8;CHAPTER 24. AUTONOMOUS SATELLITE NAVIGATION USING OPTICO-INERTIAL INSTRUMENTS;194
8.8.1;ABSTRACT;194
8.8.2;KEYWORDS;194
8.8.3;INTRODUCTION;194
8.8.4;EXTENDED KALMAN FILTER - SIMULATION PROCEDURE;194
8.8.5;AUTONOMOUS NAVIGATION USING A STELLAR REFRACTION MEASUREMENT;195
8.8.6;APPLICABILITY TO GEOSTATIONARY MISSIONS;196
8.8.7;APPLICABILITY TO LOW ORBITS;197
8.8.8;MEASUREMENTS BY LANDMARKS RECOGNITIONS;197
8.8.9;CONCLUSION;199
8.8.10;REFERENCES;199
8.9;CHAPTER 25. EXPLICIT VG GUIDANCE ALGORITHM FOR A SOLID POWERED CLOSED LOOP GUIDANCE MISSION;200
8.9.1;NOMENCLATURE;200
8.9.2;INTRODUCTION;201
8.9.3;GUIDANCE ALGORITHM FOR ASLV;201
8.9.4;SIMULATION RESULTS;203
8.9.5;CONCLUSIONS;203
8.9.6;REFERENCES;203
8.10;CHAPTER 26. FORMULATION OF A MULTI-RATE KALMAN FILTER AND ITS APPLICATION TO THE NAVIGATION OF A WINGED VEHICLE;208
8.10.1;1. INTRODUCTION;208
8.10.2;2. OUTLINE OF NAVIGATION SYSTEM;208
8.10.3;3. KALMAN FILTER SYSTEM;209
8.10.4;4. SIMULATION;213
8.10.5;5. CONCLUSION;213
8.10.6;REFERENCES;214
8.11;CHAPTER 27. OPTIMUM STRATEGY FOR INJECTION MANEUVERS IN LUNAR DOUBLE SWING-BY MISSIONS;216
8.11.1;1. Introduction;216
8.11.2;2. Injection Manever and Transfer Orbit;216
8.11.3;3. Mathematical Description of Orbits and Maneuvers;217
8.11.4;4. Analysis;219
8.11.5;5. Conclusion;220
8.11.6;References;220
8.12;CHAPTER 28. NEW INTEGRATION SCHEME OF GPS-INS HYBRID NAVIGATION SYSTEM FOR MANEUVERING SPACECRAFT;222
8.12.1;INTRODUCTION;222
8.12.2;DESCRIPTION OF NEW INTEGRATION SCHEME;222
8.12.3;THEORETICAL ANALYSIS OF NEW INTEGRATION SCHEME;225
8.12.4;SIMULATION RESULTS;226
8.12.5;APPLICABILITY OF THE PRESENTSCHEME;228
8.12.6;CONCLUSIONS;228
8.12.7;REFERENCES;228
9;PART 5: COMPONENT TECHNOLOGY;230
9.1;CHAPTER 29. PERFORMANCE CHARACTERIZATION OF THE HUBBLE SPACE TELESCOPE RATE GYRO ASSEMBLY1;230
9.1.1;INTRODUCTION;230
9.1.2;RATE GYRO ASSEMBLY DESCRIPTION;230
9.1.3;PERFORMANCE CHARACTERIZATION METHODOLOGY FOR THE ST/RGA;231
9.1.4;DETAILED PERFORMANCE CHARACTERIZATION;231
9.1.5;ATTITYUE REFERENCE STABILITY CHARACTERIZATION;232
9.1.6;NOISE;232
9.1.7;SCALE FACTOR LINEARITY AND STABILITY;232
9.1.8;STABILITY OF ST/RGA MECHANICAL
ALIGNMENT;233
9.1.9;CONCLUSIONS;233
9.1.10;REFERENCES;233
9.2;CHAPTER 30. IN-FLIGHT CALIBRATION METHOD OF INSTRUMENT MISALIGNMENT OF AN ASTRONOMY SATELLITE;234
9.2.1;1. INTRODUCTION;234
9.2.2;2. ATTITUDE DETERMINATION SYSTEM OF ASTRO-C;234
9.2.3;3. ATTITUDE DETERMINATION AND BIAS ERROR ESTIMATION;235
9.2.4;4. IN-FLIGHT MISALIGNMENT CALIBRATION AND COMPENSATION SCHEME;237
9.2.5;5. SENSITIVITY ANALYSIS AND SIMULATION OF THE CALIBRATION;238
9.2.6;6. CONCLUSION;239
9.2.7;REFERENCE;239
9.3;CHAPTER 31. CCD IMAGING SENSOR;242
9.3.1;1 - INTRODUCTION : VARIOUS APPLICATION OF CCD OPTICAL SENSORS;242
9.3.2;2 - ABOUT THE CCD–MATRIX DETECTOR;243
9.3.3;3 - MAIN PERFORMANCES OF MULTI-PURPOSE CCD SENSUR;243
9.3.4;4 - DESCRIPTION OF THE DESIGN;244
9.3.5;5 - DESCRIPTION OF THE EVALUATION BENCH OF THE SIS;246
9.3.6;6 - ALGORITEMIC TREATMENT;247
9.3.7;7 - CONCUJSION;249
9.4;CHAPTER 32. DEVELOPMENT OF AN ADVANCED HYBRID CONTROL SYSTEM FOR A CRYOGENIC SPECTROMETER;250
9.4.1;INTRODUCTION;250
9.4.2;PROBLEM DESCRIPTION;250
9.4.3;ACTUATOR CONCEPT;251
9.4.4;ETALON CONTROL SYSTEM CONCEPT;254
9.4.5;CONTROL LOGIC;255
9.4.6;CONTROL SYSTEM IMPLEMENTATION;256
9.4.7;CRYOGENIC-VACUUM PERFORMANCE TESTING;257
9.4.8;CONCLUSIONS;261
9.4.9;REFERENCES;261
9.5;CHAPTER 33. A NEW STEERING LAW OF A SINGLEGIMBAL CMG SYSTEM OF PYRAMID CONFIGURATION;262
9.5.1;INTRODUCTION;262
9.5.2;APPLICATION FOR BALLOON-BORNE SYSTEMS;262
9.5.3;PYRAMID TYPE CMG SYSTEM;262
9.5.4;ELLIPTIC TYPE SINGULAR STATE;263
9.5.5;STEERING LAW;263
9.5.6;SIMULATION RESULTS;264
9.5.7;CONCLUSION;265
9.5.8;REFERENCES;265
9.5.9;LIST OF FIGURES;265
10;PART 6: INVITED PAPER;270
10.1;CHAPTER 34. THE SPACE SHUTTLE;270
11;PART 7: PLATFORMS, RVD AND MANIPULATORS;274
11.1;CHAPTER 35. A FREE-FLYING POWER PLANT FOR A MANNED SPACE STATION;274
11.1.1;INTRODUCTION;274
11.1.2;THE EQUATIONS OF MOTION;274
11.1.3;THE CONTROL LAW;276
11.1.4;ROBUSTNESS OF THE CONTROL LAW;276
11.1.5;OPTICAL ATTITUDE AND POSITION DETERMINATION;277
11.1.6;SIMULATION RESULTS;277
11.1.7;POWER TRANSMISSION OPTIONS;278
11.1.8;SUMMARY;279
11.1.9;SYMBOLS;279
11.1.10;ACKNOWLEDGEMENT;279
11.1.11;REFERENCES;279
11.2;CHAPTER 36. MODELLING AND SIMULATION OF DISTRIBUTED FLEXIBILITY IN A SPACEBORNE MANIPULATOR;280
11.2.1;INTRODUCTION;280
11.2.2;CONSIDERATION OF DISTRIBUTED FLEXIBILITY IN THE DYNAMICS;280
11.2.3;PRACTICAL USE OF THE FICTITIOUS JOINTS APPROACH;283
11.2.4;CONCLUSION;288
11.2.5;REFERENCES;288
11.3;CHAPTER 37. FEASIBILITY OF TIME DELAY COMPENSATION FOR A SPAC ETELEOPERATION TASK;290
11.3.1;I INTRODUCTION;290
11.3.2;II SYSTEM ANALYSIS;291
11.3.3;Ill TIME DELAY COMPENSATION;292
11.3.4;IV LABORATORY EXPERIMENTS;295
11.3.5;V CONCLUSION;296
11.3.6;REFERENCES;296
11.4;CHAPTER 38. CONTROL TECHNIQUES FOR RENDEZ-VOUS AND DOCKING;298
11.4.1;1- MISSION CONSTRAINTS AND SCENARII;298
11.4.2;2- CANDIDATE SCENARII;299
11.4.3;3- CONTROLS;300
11.4.4;4- CONCLUSION;303
11.4.5;5- ACKNOWLEDGMENT;305
11.4.6;6- REFERENCES;305
11.5;CHAPTER 39. CONTROL OF IN-ORBIT SPACE MANIPULATION;306
11.5.1;ABSTRACT;306
11.5.2;1 INTRODUCTION;306
11.5.3;2 SPACE MANIPULATOR APPLICATIONS;306
11.5.4;3 - MANIPULATION MOTIONS;307
11.5.5;4 - SPACE CONSTEAINTS;307
11.5.6;5 - MAN LOCATION - MAN MAC3IINE TASK SHARING;308
11.5.7;6 SPACE MANIPULATOR CONTROL DESIGN;308
11.5.8;7 - CONTROL ARCHITECTURE AND MODES;308
11.5.9;8 - SENSORY FUNCTIONS;310
11.5.10;9 - SPACE MANIPULATOR DYNAMICS;310
11.5.11;10 - DESIGN, VALIDATION AND CONTROL SOFTWARES;312
11.5.12;11 - COJMCLUSION;313
11.6;CHAPTER 40. CONTROL ASPECTS OF A EUROPEAN SPACE MANIPULATOR SYSTEM;314
11.6.1;INTRODUCTION;314
11.6.2;CONTROL ELEMENTS;316
11.6.3;ON-BOARD IMPLEMENTATION;319
11.6.4;COMPARISON WITH SHUTTLE RMS;319
11.6.5;CONCLUDING REMARKS;320
11.6.6;REFERENCES;320
12;SUBJECT INDEX;324
13;AUTHOR INDEX;322



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.