Chiprout / Nakhla | Asymptotic Waveform Evaluation | E-Book | sack.de
E-Book

E-Book, Englisch, Band 252, 197 Seiten, eBook

Reihe: The Springer International Series in Engineering and Computer Science

Chiprout / Nakhla Asymptotic Waveform Evaluation

And Moment Matching for Interconnect Analysis

E-Book, Englisch, Band 252, 197 Seiten, eBook

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4615-3116-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



The intense drive for signal integrity has been at the forefront ofrapid and new developments in CAD algorithms. Thousands ofengineers, intent on achieving the best design possible, use SPICE on a daily basis for analog simulation and general circuit analysis. But the strained demand for high data speeds, coupled with miniaturizationon an unprecedented scale, has highlighted the previously negligible effects of interconnects; effects which are not always handled appro priately by the present levels of SPICE. Signals at these higher speeds may be degraded by long interconnect lengths compared to the increasingly shorter sig nal rise times. Interconnect structures can be diverse (pins, connectors, leads, microstrips, striplines, etc. ) and present at any of the hierarchical packaging levels: integrated circuits, printed circuit boards, multi-chip modules or sys tem backplanes. Analysis of these effects in any CAD package has become a necessity. Asymptotic waveform evaluation (AWE) and other moment matching tech niques have recently proven useful in the analysis of interconnect structures and various networks containing large linear structures with nonlinear termi nations. Previously, all that was available to the designer was a full SPICE simulation or a quick but uncertain timing estimation. Moment matching, used in linear systems analysis as a method of model reduction, describes a method to extract a small set of dominant poles from a large network. The information is obtained from the Taylor series coefficients (moments) of that system.
Chiprout / Nakhla Asymptotic Waveform Evaluation jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Introduction.- 1.1 Motivation.- 1.2 Overview.- 1.3 Notation.- 2 Asymptotic Waveform Evaluation.- 2.1 State space formulation.- 2.2 Generating an approximate response.- 2.3 MNA formulation.- 2.4 Examples.- 3 Transmission Lines.- 3.1 Linear subnetwork formulation.- 3.2 Moments of distributed networks.- 3.3 Uniform lossy coupled transmission lines.- 3.4 Nonuniform transmission lines.- 3.5 Miscellaneous combinations.- 4 Padé Approximations.- 4.1 The rational approximation.- 4.2 Accuracy.- 4.3 Laurent expansion about o0.- 5 Accuracy Improvements.- 5.1 Higher precision programming.- 5.2 Moment scaling.- 5.3 Padæ table analysis.- 5.4 Optimal pole selection.- 5.5 Partitioning.- 5.6 Method of characteristics.- 5.7 Frequency shifting.- 6 Complex Frequency Hopping.- 6.1 Complex expansions.- 6.2 Pole convergence.- 6.3 Pole selection.- 6.4 Search strategy.- 6.5 Extra CPU requirements.- 7 Nonlinear Analysis.- 7.1 Notation.- 7.2 Differential equations (SPICE) approach.- 7.3 Recursive convolution approach.- 8 Sensitivity Analysis.- 8.1 Pole and zero sensitivity.- 8.2 Coefficient sensitivity.- 8.3 Moment sensitivity: lumped elements.- 8.4 Moment sensitivity: distributed elements.- 8.5 Sensitivity of multi-conductor transmission line stamp.- 9 Other Applications.- 9.1 PEEC simulation.- 9.2 3-D RC mesh analysis.- 9.3 Symbolic analysis.- A Appendix.- A.1 Transmission line equations.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.