Chiodi | An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines | E-Book | sack.de
E-Book

E-Book, Englisch, 245 Seiten, eBook

Chiodi An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines

E-Book, Englisch, 245 Seiten, eBook

ISBN: 978-3-8348-8131-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Marco Chiodi obtained his Ph.D. by Prof. Dr.-Ing. Michael Bargende at the University of Stuttgart.
Chiodi An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Acknowledgments;7
2;Table of Contents;8
3;Abstract;14
4;Zusammenfassung;18
5;Symbols, Subscripts and Abbreviations;22
5.1;Roman Symbols;22
5.2;Greek Symbols;29
5.3;Subscripts and Abbreviations;30
6;1 Introduction;33
6.1;1.1 Society and Transportation;33
6.2;1.2 The Fascination of Internal Combustion Engines;33
6.3;1.3 Internal Combustion Engines and Sustainable Transportation;34
6.3.1;1.3.1 Development Targets of Internal Combustion Engines in the Past;34
6.3.2;1.3.2 The Role of Alternative Engine Concepts;36
6.3.3;1.3.3 Development Targets of Internal Combustion Engines in the Future;36
6.3.3.1;1.3.3.1 General Improvement of actual Solutions;37
6.3.3.2;1.3.3.2 Downsizing and Turbo-Charging;37
6.3.3.3;1.3.3.3 Hybridization;37
6.3.3.4;1.3.3.4 Development of Innovative Combustion Solutions;38
6.3.3.5;1.3.3.5 Alternative Fuels;38
6.4;1.4 How to Face the Complexity of Future Internal- Combustion-Engines;40
7;2 Simulation of Internal Combustion Engines;42
7.1;2.1 Simulation towards Virtual Engine Development;43
7.1.1;2.1.1 One Tool for the Simulation of the Entire Engine?;43
7.1.1.1;2.1.1.1 Mechanical Numerical Analysis;44
7.1.1.2;2.1.1.2 Engine Operating Cycle Analyses;45
7.1.2;2.1.2 The Future Challenge: an improved Integration of Simulation Tools;47
7.2;2.2 Today’s Repartition of the Resources in Engine Development;49
7.3;2.3 Introduction to Engine Processes Modeling in the Simulation of the Operating Cycle;53
8;3 Engine Energy- Balance;57
8.1;3.1 Energy-Balance of the Combustion Chamber;57
8.2;3.2 Energy-Balance of the Entire Engine;58
8.3;3.3 The Role of Engine Energy-Balance in the Engine Development Process;60
9;4 Real Working-Process Analysis;61
9.1;4.1 Introduction;61
9.2;4.2 Fundamental Equations;63
9.3;4.3 Thermal State Equation of the Working Fluid;64
9.4;4.4 Engine Modeling (Engine-Specific Models);64
9.4.1;4.4.1 Modeling of the Thermo-Physical Properties of the Working Fluid;65
9.4.2;4.4.2 Modeling of the Wall Heat-Transfer;66
9.4.3;4.4.3 Modeling of the Combustion Process;66
9.4.3.1;4.4.3.1 Empirical Models;67
9.4.3.2;4.4.3.2 Quasi-dimensional Models;72
9.5;4.5 Two Approaches in the Calculation of the Real Working-Process;75
9.5.1;4.5.1 Pressure Profile Calculation - Combustion Profile Supply;76
9.5.2;4.5.2 Combustion Profile Calculation - Pressure Profile Supply;76
9.6;4.6 The Role of Real Working-Process Analysis in the Engine Development Process;77
10;5 One-Dimensional Simulation (1D-CFD-Simulation);80
10.1;5.1 Introduction;80
10.2;5.2 Engine Layout and Conservation Equations;81
10.3;5.3 The Role of the 1D-CFD-Simulation in the Engine Development Process;82
11;6 Three-Dimensional Simulation (3D-CFD Simulation);84
11.1;6.1 Fundamental Equations;85
11.1.1;6.1.1 Mass Conservation Equation;85
11.1.2;6.1.2 Species Mass Conservation Equation;86
11.1.3;6.1.3 Momentum Conservation Equation (Navier-Stokes’ Equation);86
11.1.4;6.1.4 Energy Conservation Equation;87
11.2;6.2 Engine Modeling;87
11.2.1;6.2.1 Universally-Valid 3D-CFD-Models;88
11.2.1.1;6.2.1.1 Modeling of the Thermo-physical Properties of the Working Fluid;88
11.2.1.2;6.2.1.2 Modeling of Non-Convective Processes;89
11.2.1.3;6.2.1.3 Turbulence Modeling;91
11.2.1.4;6.2.1.4 Combustion Models;98
11.2.1.5;6.2.1.5 Wall Heat-Transfer Models;99
11.2.2;6.2.2 Introduction to Engine-Specific 3D-CFD-Models;99
11.3;6.3 Discretization Practices (Numerical Implementation);100
11.3.1;6.3.1 Spatial Flux Discretization;102
11.3.1.1;6.3.1.1 Low-Order Differencing Scheme – Upwind Differencing (UD);102
11.3.1.2;6.3.1.2 Higher-Order Differencing Scheme;103
11.4;6.4 The Role of the 3D-CFD-Simulation in the Engine Development Process;103
12;7 Towards an improved 3D-CFD- Simulation;105
12.1;7.1 An innovative Fast-Response 3D-CFD-Tool: QuickSim;105
12.1.1;7.1.1 Fast Analysis;106
12.1.1.1;7.1.1.1 Mesh Discretization for DNS Simulations;108
12.1.1.2;7.1.1.2 Mesh Discretization for LES Simulations;108
12.1.1.3;7.1.1.3 Mesh Discretization for QuickSim Simulations;109
12.1.2;7.1.2 Reliable Calculation;110
12.1.3;7.1.3 User-Friendliness;111
12.1.4;7.1.4 Clear Representation of the Results;112
12.1.5;7.1.5 Cost Efficiency;113
12.1.5.1;7.1.5.1 Processor Utilization for QuickSim Simulations;113
12.2;7.2 Additional Features of QuickSim;114
12.2.1;7.2.1 Simulation of several successive Engine Operating Cycles;114
12.2.2;7.2.2 Extension of the 3D-CFD-Domain up to a Full-Engine Simulation;116
12.2.3;7.2.3 The Simulation of a Flow Test-Bench;119
12.3;7.3 Summary of the QuickSim Features;121
12.4;7.4 QuickSim’s Calculation Layout;122
13;8 3D-CFD-Modeling of the Thermodynamic Properties of the Working Fluid;126
13.1;8.1 Introduction;126
13.2;8.2 Chemical Composition of the Working Fluid Mixture;127
13.2.1;8.2.1 One-Step Fuel-Oxidation Reaction Mechanism;127
13.2.2;8.2.2 The Reality: More than Thousand Intermediate Products;129
13.3;8.3 Traditional Approach;131
13.4;8.4 QuickSim’s Approach: Few Species for the Description of the Working Fluid;132
13.4.1;8.4.1 QuickSim’s Approach: A universally-valid Chemical Reaction Scheme for the Description of Burned Gas;137
13.4.1.1;8.4.1.1 Chemical Equilibrium Assumption;139
13.4.1.2;8.4.1.2 The proposed Chemical Reaction Scheme;140
13.4.1.3;8.4.1.3 A “frozen” Composition at low Temperatures;142
13.4.1.4;8.4.1.4 Results: The Chemical Composition of Burned Gas;143
13.4.2;8.4.2 QuickSim’s Approach: Conclusive Modeling of the Thermodynamic Properties of Burned Gas;146
13.4.2.1;8.4.2.1 Heat Release at the Flame Front and Post-Oxidation of Exhaust Gas with Fresh Gas;148
13.4.2.2;8.4.2.2 Heat Exchange due to Dissociation Effects and Post-Oxidation within Exhaust Gas;150
13.4.2.3;8.4.2.3 Combustion Conversion Efficiency;153
14;9 3D-CFD-Modeling of the Combustion for SI-Engines;155
14.1;9.1 Introduction;155
14.2;9.2 Flame Propagation Modeling (Weller Model);158
14.3;9.3 QuickSim’s Approach: Implementation Improvement;160
14.3.1;9.3.1 Numerical Implementation of the Flame Propagation Model;160
14.3.2;9.3.2 Numerical Inconsistencies at the Flame Front;163
14.3.2.1;9.3.2.1 Expedients for the Numerical Inconsistencies at the Flame Front;165
14.3.3;9.3.3 Local Two-Zones Model;166
14.3.4;9.3.4 Ignition Model;171
14.3.5;9.3.5 Final Implementation Procedure;173
14.4;9.4 Results;175
15;10 3D-CFD-Modeling of the Wall Heat-Transfer;177
15.1;10.1 Introduction;177
15.1.1;10.1.1 Phenomena Understanding, Calculation Approach and Considerations;178
15.2;10.2 State-of the-Art of Engine Heat-Transfer Calculationin the 3D-CFD-Simualtion;180
15.2.1;10.2.1 The Wall Function Approach;180
15.2.2;10.2.2 Low Reynolds Number Models;182
15.2.3;10.2.3 Phenomenological Heat-Transfer Models in the Real Working-Process Analysis (WP);183
15.2.3.1;10.2.3.1 Motivation for a Phenomenological Approach;184
15.2.3.2;10.2.3.2 Woschni’s Correlation;184
15.2.3.3;10.2.3.3 Hohenberg’s Correlation;185
15.2.3.4;10.2.3.4 Bargende’s Correlation;185
15.2.4;10.2.4 Comparison between the 3D-CFD-Heat-Transfer (Wall- Function Model) and the Real Working-Process Analysis;187
15.2.4.1;10.2.4.1 Sensitivity Analysis of the 3D-CFD-Heat-Transfer calculated with a Wall-Function Model;190
15.2.5;10.2.5 QuickSim’s Approach: A new Phenomenological Heat- Transfer Model in the 3D-CFD-Simulation;194
15.2.5.1;10.2.5.1 The Heat-Transfer during the Working Cycle;195
15.2.5.2;10.2.5.2 The Heat-Transfer during the Charge Changing Period;201
15.3;10.3 Results;201
15.4;10.4 Influence of 3D-CFD-Heat-Transfer-Models on the Engine Energy-Balance;203
16;11 A Way towards Virtual Engine Development;206
16.1;11.1 Introduction;206
16.2;11.2 The Hardware: a turbocharged CNG Race-Engine;206
16.3;11.3 Setting of the 3D-CFD-Simulation;208
16.3.1;11.3.1 Initial Conditions and Properties of the Working Fluid;210
16.3.2;11.3.2 Boundary Conditions;211
16.4;11.4 CNG-Injector Model;213
16.4.1;11.4.1 Traditional Gas Injection Modeling;215
16.4.2;11.4.2 Gas Injection Modeling in QuickSim;216
16.5;11.5 3D-CFD-Domains limited to the Cylinder;218
16.5.1;11.5.1 3D-CFD-Simulation excluding the Fuel Injectors;218
16.5.2;11.5.2 3D-CFD-Simulation including the Fuel Injectors;221
16.6;11.6 Extension of the 3D-CFD-Domain: One Cylinder with the Airbox;226
16.6.1;11.6.1 Between Predictability and Results Consistency;227
16.6.1.1;11.6.1.1 QuickSim’s Improved Approach: The integrated 0D- and1D-CFD Simulationof the missing Cylinders;228
16.7;11.7 3D-CFD-Simulation of the Full Engine;231
16.7.1;11.7.1 Results and 3D-CFD-Flow Field Investigations on the Full Engine;232
16.7.1.1;11.7.1.1 Mixture Formation;234
16.7.1.2;11.7.1.2 Residual Gas Distribution;239
16.7.1.3;11.7.1.3 Turbulence;241
16.7.1.4;11.7.1.4 Combustion;243
16.7.1.5;11.7.1.5 Convergence of the Results;245
16.7.2;11.7.2 Result Comparison among different Operating Conditions;245
16.8;11.8 The Simulation of successive Operating Cycles;247
16.9;11.9 Result Comparison among the different Extensions of the 3D-CFD-Domain;250
17;12 Conclusion;252
18;13 Outlook;254
19;Appendix A;256
19.1;A.1 Vector and Matrix Analysis;256
20;Appendix B;258
20.1;B.1 Thermodynamic Properties of the Working Fluid;258
21;References;269


Marco Chiodi obtained his Ph.D. by Prof. Dr.-Ing. Michael Bargende at the University of Stuttgart.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.