E-Book, Englisch, Band 364, 626 Seiten, eBook
E-Book, Englisch, Band 364, 626 Seiten, eBook
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-981-287-978-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;1 Optimization and Improvement of Off-Road Vehicle Tail Door System;12
2.1;Abstract;12
2.2;1.1 Introduction;12
2.3;1.2 Problem Description;13
2.4;1.3 Analysis;13
2.4.1;1.3.1 Weak Stiffness and Strength on Tail Frame;13
2.4.2;1.3.2 Non-conforming Hinge in Design Verification Test;15
2.4.3;1.3.3 Weak Stiffness and Strength of Tail Door System;17
2.4.4;1.3.4 Unreasonable Tail Door Accessories Layout and Design;18
2.5;1.4 Solutions;20
2.5.1;1.4.1 Optimization of Tail Frame Structure and Improvement of Structure Stiffness;20
2.5.2;1.4.2 Optimization of Tail Door Hinge Structure to Improve Hinge Stiffness;23
2.5.3;1.4.3 Optimization of Hinge Reinforcement Panel and Application of Mounting Pad to Improve the Stiffness and Strength of Tail Door;24
2.5.4;1.4.4 Optimization the Tail Door Accessories Layout and Design;24
2.6;1.5 CAE Analysis;27
2.7;1.6 Road Test Verification;28
2.8;1.7 Conclusion;28
2.9;References;28
3;2 Analysis on Lock Problem in Frontal Collision for Mini Vehicle;29
3.1;Abstract;29
3.2;2.1 Introduction;29
3.3;2.2 Classifications of Car Doors and Car Door Latch Systems;30
3.4;2.3 Stress Analysis on Sliding Door Latch System;32
3.4.1;2.3.1 Acceleration Analysis on the Vehicle's B Pillar;32
3.4.2;2.3.2 Stress Analysis on the Sliding Door's Lock Mechanism;32
3.5;2.4 Improvement Plans for the Sliding Door's Lock Mechanism;34
3.5.1;2.4.1 Plan One: Adjust the Torsion Spring Torque;35
3.5.2;2.4.2 Plan Two: Adjust the Inertia Moment of the Lock Switching Panel;36
3.5.3;2.4.3 Test Verification;39
3.6;2.5 Conclusion;40
3.7;References;40
4;3 Development and Application of Intelligent Diesel Idling Start/Stop Technology for Commercial Vehicle;41
4.1;Abstract;41
4.2;3.1 Introduction;41
4.3;3.2 Scheme of Diesel Start-Stop Technology;42
4.4;3.3 Development Work of Intelligent Diesel Start-Stop;43
4.5;3.4 Field Test of Start-Stop Engine in City Bus;47
4.6;3.5 Conclusion;50
4.7;References;50
5;4 Kinematics and K&C Experiment of a Rectilinear Rear Independent Suspension;51
5.1;Abstract;51
5.2;4.1 Introduction;51
5.3;4.2 Kinematic Analysis;52
5.4;4.3 K&C Experiment and Discussion;55
5.5;4.4 Conclusion;58
5.6;References;58
6;5 Flatness-Based Vehicle Coupled Control for Steering Stability and Path Tracking;59
6.1;Abstract;59
6.2;5.1 Introduction;59
6.3;5.2 Vehicle Steering and Driving/Breaking Model;60
6.4;5.3 The Target Path and Vehicle Variables;61
6.4.1;5.3.1 Target Path;61
6.4.2;5.3.2 Target Stable State;62
6.5;5.4 Flatness-Based Control;63
6.5.1;5.4.1 Differential Flatness Theory;63
6.5.2;5.4.2 Controller Design;63
6.6;5.5 Simulation Results;65
6.7;5.6 Conclusion;69
6.8;Acknowledgments;70
6.9;References;70
7;6 Analysis of Parameter Matching Characteristics for Centrifugal Pendulum Vibration Absorber;71
7.1;Abstract;71
7.2;6.1 Introduction;72
7.3;6.2 The Structure of the Vibration Absorber;72
7.4;6.3 The Model of Centrifugal Pendulum Vibration Absorber;73
7.4.1;6.3.1 Fixed Pendulum Length Case;74
7.4.2;6.3.2 Fluid Pendulum Length Case;75
7.4.3;6.3.3 Natural Frequency of the Absorber;76
7.5;6.4 The Mass Parameter Matching Characteristic of the Pendulum Block;77
7.6;6.5 The Parameter Matching Characteristics of Pendulum Paths;79
7.6.1;6.5.1 Circular Pendulum Path;79
7.6.2;6.5.2 Elliptical Pendulum Path;79
7.6.3;6.5.3 Polynomial Pendulum Path;80
7.6.4;6.5.4 Analysis of Pendulum Path Parameter Matching;82
7.7;6.6 Conclusion;83
7.8;References;83
8;7 Active Suspension Control for Wheel-Drive Electric Vehicle Based on Vibration Absorber;85
8.1;Abstract;85
8.2;7.1 Introduction;85
8.3;7.2 Analysis of the Vibration Absorber Model;86
8.4;7.3 Suspension Parameter Modeling;90
8.4.1;7.3.1 Parameter Selection;90
8.4.2;7.3.2 RMS Response Analysis and Optimization;90
8.5;7.4 Design of the FxLMS Controller for Electromagnetic Active Suspension;92
8.5.1;7.4.1 Algorithm Principle of FxLMS;92
8.5.2;7.4.2 FxLMS Algorithm Based on the Half-Car Model;92
8.6;7.5 Simulation Result;93
8.7;7.6 Conclusion;95
8.8;References;96
9;8 Design and Optimization of Halbach Active Suspension Actuator of Vehicle;97
9.1;Abstract;97
9.2;8.1 Introduction;97
9.3;8.2 Structural Design of Actuator for Active Suspension;98
9.4;8.3 Analytical Model of Halbach Tubular Modular Permanent-Magnet Linear Actuator;101
9.5;8.4 Sensitivity Analysis and Optimization for the Parameters of Linear Actuator;102
9.5.1;8.4.1 Local Sensitivity Analysis for the Parameters of Actuator;102
9.5.2;8.4.2 Optimization of Magnet Based on Gap Flux;104
9.5.3;8.4.3 Optimization of Slot Based on Induced EMF;105
9.6;8.5 Analysis for Electromagnetic Active Force of Actuator;107
9.6.1;8.5.1 EM Force Ripple Analysis;107
9.6.2;8.5.2 Matching Analysis of EM Force and Suspension Active Force;109
9.7;8.6 Conclusion;109
9.8;References;110
10;9 Study of A- and B- Substituted Perovskite CDPF Catalyst and Its' Catalytic Activity;111
10.1;Abstract;111
10.2;9.1 Introduction;111
10.3;9.2 Experimental;112
10.3.1;9.2.1 Catalyst Synthesis;112
10.3.2;9.2.2 SEM/EDS;112
10.3.3;9.2.3 XRD;112
10.3.4;9.2.4 TG;113
10.4;9.3 Results and Analysis;113
10.4.1;9.3.1 SEM/EDS;113
10.4.2;9.3.2 XRD;114
10.4.3;9.3.3 TG;115
10.4.4;9.3.4 Activation Energy Calculation;116
10.5;9.4 Summary;117
10.6;References;118
11;10 Gasoline Particulate Filter Technology for CHINA Stage-6 Emission Legislation;119
11.1;Abstract;119
11.2;10.1 Regulation Background;119
11.3;10.2 Design Guidelines of Gasoline Particulate Filter;121
11.3.1;10.2.1 GPF Concepts;121
11.3.2;10.2.2 GPF Parameters;121
11.3.3;10.2.3 Coated GPF;122
11.3.4;10.2.4 GPF Layout Styles;122
11.3.5;10.2.5 Validation Results;123
11.4;10.3 GPF Regeneration;123
11.5;10.4 Summary;125
11.6;References;125
12;11 Thermal Runaway Propagation Within Module Consists of Large Format Li-Ion Cells;126
12.1;Abstract;126
12.2;11.1 Introduction;126
12.3;11.2 Experiment Settings;127
12.4;11.3 Model Structure;128
12.5;11.4 Result and Discussion;128
12.5.1;11.4.1 EV-ARC Test;128
12.5.2;11.4.2 Thermal Runaway Initiation: Nail Penetration Test;129
12.5.3;11.4.3 Thermal Runaway Propagation Within a Battery Module;129
12.5.4;11.4.4 Heat Transfer Amount Through Different Paths During Thermal Runaway Propagation;130
12.5.5;11.4.5 Preventing Thermal Runaway Propagation Within a Battery Module;131
12.6;11.5 Conclusion;132
12.7;References;132
13;12 Depth Research on Brake Energy Regeneration Evaluation and Test Method of Electric Driven Vehicle;133
13.1;Abstract;133
13.2;12.1 Evaluation Index;134
13.2.1;12.1.1 Safety;134
13.2.2;12.1.2 Efficiency of Energy Recovery;134
13.2.2.1;12.1.2.1 Vehicle Force Analysis;134
13.2.2.2;12.1.2.2 Energy Flow Model;135
13.3;12.2 Test Method;137
13.4;12.3 Real Vehicle Test;138
13.4.1;12.3.1 Test Vehicle Parameter;138
13.4.2;12.3.2 Test Result;138
13.4.2.1;12.3.2.1 Braking Safety;138
13.4.2.2;12.3.2.2 Braking Energy Recycling Efficiency Test;139
13.5;12.4 Conclusion;142
13.6;References;142
14;13 Secondary Dendrite Arm Spacing Study of Partition in Aluminumalloy Cylinder Heads;143
14.1;Abstract;143
14.2;13.1 Introduction;143
14.2.1;13.1.1 Status;143
14.2.2;13.1.2 Significance of This Study;144
14.2.3;13.1.3 Secondary Dendrite Arm Spacing (SDAS);144
14.3;13.2 Experiment Procedure;145
14.3.1;13.2.1 Aluminum Alloy Cylinder Heads Introduce of the Experimentations;145
14.3.2;13.2.2 Sampling Location;146
14.3.3;13.2.3 SDAS Tests of Raw Cylinder Heads;146
14.3.4;13.2.4 Mechanical Characters Test of Raw Cylinder Head;146
14.3.5;13.2.5 Cylinder Head Sample's Reliability Test of Assemble Engines;147
14.3.6;13.2.6 SDAS Measure for the Cylinder Heads Passed Reliability Test;147
14.4;13.3 Result of the Experiment;148
14.4.1;13.3.1 SDAS (The Secondary Dendrite Arm Spacing) of the Raw Cylinder Head;148
14.4.2;13.3.2 Mechanical Property Test Results of the Raw Cylinder Head;148
14.4.3;13.3.3 Reliability Test of the Cylinder Head;149
14.4.4;13.3.4 SDAS of the Reliability Test's Cylinder Head Sample;149
14.5;13.4 Discussion;150
14.5.1;13.4.1 Casting Process of Cylinder Heads;150
14.5.2;13.4.2 Mechanical Characteristics and the Total Stress of the Cylinder Head;151
14.6;13.5 Conclusion;151
14.7;References;152
15;14 Application of MQL in Engine Manufacturing;153
15.1;Abstract;153
15.2;14.1 Foreword;153
15.3;14.2 MQL Technical Principle;154
15.3.1;14.2.1 Fundamental;154
15.3.2;14.2.2 MQL Advantage;154
15.3.2.1;14.2.2.1 Environmental Effect;154
15.3.2.2;14.2.2.2 Occupational Health;154
15.3.2.3;14.2.2.3 Cost Effect;154
15.4;14.3 Application of MQL Technology;155
15.5;14.4 Application of MQL in Engine Manufacturing;156
15.5.1;14.4.1 Influence of Thermal Deformation in Process System;157
15.5.2;14.4.2 Change of Machining Process;157
15.5.3;14.4.3 Part of the Process Is not Suitable for MQL Technology;158
15.5.3.1;14.4.3.1 Milling Face;158
15.5.3.2;14.4.3.2 Turn-Turn Broaching, External Milling;158
15.5.3.3;14.4.3.3 Drilling Deep Blind Holes;159
15.5.3.4;14.4.3.4 Drilling Diameter lessthan Phi 3 Holes;159
15.5.3.5;14.4.3.5 Internal Boring (The Cylinder Hole, Crankshaft Hole, Camshaft Hole);159
15.6;14.5 Application Prospect of MQL Technology;159
15.7;References;160
16;15 Study on Oil Injection Time Reducing of Engine;161
16.1;Abstract;161
16.2;15.1 Introduction;161
16.3;15.2 Modeling;162
16.3.1;15.2.1 Geometry;162
16.3.2;15.2.2 Computational Domain and Meshing;162
16.3.3;15.2.3 Case Setting;163
16.4;15.3 Result Analysis of Basic Model;164
16.5;15.4 Guiding Channel Structure Optimization;165
16.6;15.5 Other Factors that Affect Oil Injection Time;167
16.6.1;15.5.1 Oil Temperature;167
16.6.2;15.5.2 Height of Oil Channel's Inlet;168
16.7;15.6 Conclusion;169
16.8;References;170
17;16 Study of Control of Body Geometric Dimensions Precision;171
17.1;Abstract;171
17.2;16.1 Foreword;171
17.3;16.2 Text;172
17.3.1;16.2.1 Passing Rate of the Body;173
17.3.2;16.2.2 Process Capability Index;174
17.3.3;16.2.3 Judgment of Process Capability;176
17.3.4;16.2.4 Functional Dimension;177
17.4;16.3 Conclusion;178
18;17 Case Analysis of Typical Area of Body Corrosion;179
18.1;Abstract;179
18.2;17.1 The Skirt Component Corrosion, as Shown in Figs. 17.3 and 17.4;180
18.3;17.2 Corrosion of Wheel-Cover Component, as Shown in Figs. 17.9 and 17.10;183
18.4;17.3 Corrosion of Closer;185
18.5;17.4 Defects Such as the Sharp Edge, Burr, Welding Spot and Welding Slag;187
19;18 Development and Application of Dual UniValve System Based on a GDI Engine with SI/HCCI Dual Combustion Modes;190
19.1;Abstract;190
19.2;18.1 Introduction;190
19.3;18.2 Basic Geometry and Dynamics of Dual UniValve System;191
19.4;18.3 Test Results of Dual UniValve System;195
19.5;18.4 SI/HCCI Mode Switching Based on Dual UniValve System;199
19.6;18.5 Conclusion;199
19.7;Acknowledgments;200
19.8;References;200
20;19 Prediction of Effects of Intake Port and Chamber on Combustion Performance of Gasoline Engines;201
20.1;Abstract;201
20.2;19.1 Investigation Proposals;202
20.2.1;19.1.1 Geometry Model;203
20.2.2;19.1.2 Steady State Flow Test;203
20.3;19.2 Model Setup;204
20.3.1;19.2.1 Calculation Mesh;204
20.3.2;19.2.2 Boundary Condition and Initial Condition;205
20.3.3;19.2.3 Physical Model;205
20.3.4;19.2.4 Test Verification;206
20.4;19.3 Result Analysis;207
20.4.1;19.3.1 In-Cylinder Flow;207
20.4.2;19.3.2 Combustion and Emissions;209
20.5;19.4 Conclusion;212
20.6;References;213
21;20 Simulation Study of the Control Method of Adjustable Composite Supercharging System at Plateau;214
21.1;Abstract;214
21.2;20.1 Background;214
21.3;20.2 Engine Simulation Model;215
21.4;20.3 Study of the Control Method of the Adjustable Composite Supercharging System;216
21.5;20.4 Verification of Transient Switching Method of Composite Supercharging System;219
21.6;20.5 Conclusion;221
21.7;References;221
22;21 Emergency Dispatch Under Failure Condition of Urban Pickup and Delivery Task;222
22.1;Abstract;222
22.2;21.1 Introduction;222
22.3;21.2 Deal with Failed Customer in Classification;223
22.3.1;21.2.1 Intraday Customer Dynamic Dispatch;224
22.3.2;21.2.2 Tertian Customer Deletion;225
22.4;21.3 Emergency Dispatch of Failed Route;225
22.4.1;21.3.1 Failed Route Selection;226
22.4.2;21.3.2 Neighbour Search;226
22.4.3;21.3.3 Route Selection;227
22.4.4;21.3.4 Termination Condition;229
22.5;21.4 Calculation Example;230
22.6;21.5 Conclusion;231
22.7;References;232
23;22 Drivers' Lane Change Maneuver and Speed Behavior in Freeway Work Zones;233
23.1;Abstract;233
23.2;22.1 Introduction;234
23.3;22.2 Lane Change Definitions;234
23.4;22.3 Problem Statement;235
23.5;22.4 Research Objectives;235
23.6;22.5 Literature Review;236
23.7;22.6 Methodology;237
23.8;22.7 Data Collection;238
23.9;22.8 Lane Change Maneuvers Upstream of Work Zone;239
23.10;22.9 Logistic Regression Model;242
23.11;22.10 Conclusions;244
23.12;Acknowledgments;244
23.13;References;244
24;23 Feature-Based Automatic Modulation Recognition Design for Vehicular Network Communication;246
24.1;Abstract;246
24.2;23.1 Introduction;246
24.3;23.2 Development of the Automatic Modulation Recognition Process Using Common Features Templates;247
24.4;23.3 Algorithm for the Automatic Modulation Recognition Process;257
24.4.1;23.3.1 Procedure for Decision Block 1;257
24.4.2;23.3.2 Procedure for Decision Block 2;261
24.4.3;23.3.3 Procedure for Decision Block 3;262
24.4.4;23.3.4 Procedures for Other Decision Blocks;262
24.4.4.1;23.3.4.1 ASK and FSK Classifier Procedure;263
24.5;23.4 Simulation Experiment and Results;264
24.6;23.5 Results and Comparison;265
24.7;23.6 Conclusion;267
24.8;References;267
25;24 Recognition of Road Surface Condition Through an On-Vehicle Camera Using Multiple Classifiers;269
25.1;Abstract;269
25.2;24.1 Introduction;269
25.3;24.2 Theoretical Basis;270
25.3.1;24.2.1 Prior Research;270
25.3.2;24.2.2 Research Method;271
25.3.3;24.2.3 Innovation Point;271
25.4;24.3 Research Content and Concept;272
25.4.1;24.3.1 System Structure;272
25.4.2;24.3.2 Processing;273
25.4.2.1;24.3.2.1 Regions of Interest;273
25.4.2.2;24.3.2.2 Image Segmentation and Pre-processing;274
25.4.2.3;24.3.2.3 Classification;276
25.4.2.3.1;Tire Snippet Classification;277
25.4.2.3.2;Reflection Snippet Classification;278
25.4.2.3.3;Road Snippet Classification;278
25.4.2.4;24.3.2.4 Confidence Estimation and Result Interpretation;279
25.5;24.4 Conclusion and Outlook;280
25.6;References;281
26;25 Gas Separation Performance of Poly [1-(4-Trimethyl Silyl) Phenyl -2- Phenyl Acetylene] (Ptmsdpa)/Carbon Nanotubes (Cnts) Hybrid Composite Membrane;282
26.1;Abstract;282
26.2;25.1 Introduction;282
26.3;25.2 Experiment;283
26.3.1;25.2.1 Materials;283
26.3.2;25.2.2 Preparation and Characterization of Membrane;283
26.3.2.1;25.2.2.1 Preparation of PTMSDPA Membrane;283
26.3.2.2;25.2.2.2 Preparation of PTMSDPA/CNTs Composite Membrane;284
26.3.3;25.2.3 Gas Separation Experiment;284
26.4;25.3 Results and Discussion;284
26.4.1;25.3.1 Characterization of PTMSDPA/CNTs Hybrid Composite Membrane;284
26.4.2;25.3.2 Gas Permeability of PTMSDPA/CNTs Hybrid Composite Membrane;287
26.4.3;25.3.3 Effect of Structure of CNTs;288
26.5;25.4 Conclusion;288
26.6;References;288
27;26 Preparation and Properties of Carbon Fiber/Titanium Alloy Composite for Automobile;289
27.1;Abstract;289
27.2;26.1 Introduction;289
27.3;26.2 Experiment;290
27.3.1;26.2.1 Sample Preparation;290
27.3.2;26.2.2 Sample Characterization;290
27.4;26.3 Results and Discussion;293
27.4.1;26.3.1 Microstructure Characterization;293
27.4.2;26.3.2 Physical Characterization;293
27.4.3;26.3.3 Mechanical Characterization;294
27.5;26.4 Conclusion;295
27.6;References;295
28;27 On the Development of Automotive Composite Material Rear Bumper Beam;296
28.1;Abstract;296
28.2;27.1 Introduction;296
28.3;27.2 Composite Materials;297
28.4;27.3 Process for Composite Material Rear Bumper Beam;298
28.5;27.4 Development of Composite Material Rear Bumper Beam;300
28.5.1;27.4.1 Structure Design;300
28.5.2;27.4.2 CAE Analysis;301
28.5.2.1;27.4.2.1 Analysis on Low Speed Impact;301
28.5.2.2;27.4.2.2 Analysis on High Speed Impact;302
28.5.2.3;27.4.2.3 Analysis on Took Strength;303
28.5.3;27.4.3 Tests;304
28.5.3.1;27.4.3.1 Dimension Measurement;304
28.5.3.2;27.4.3.2 Performance Verification;304
28.5.4;27.4.4 Weight Reduction;304
28.5.5;27.4.5 Cost Analysis;304
28.6;27.5 Conclusion;306
28.7;References;307
29;28 Constitutive Analysis on Thermal-Mechanical Properties of WHT1300HF High Strength Steel;308
29.1;Abstract;308
29.2;28.1 Introduction;308
29.3;28.2 Experiment;309
29.4;28.3 Results and Discussion;310
29.4.1;28.3.1 Effect of Temperature and Strain Rate on Flow Properties;310
29.4.2;28.3.2 Constitutive Equation of Flow Behavior;311
29.5;28.4 Conclusion;314
29.6;Acknowledgement;314
29.7;References;314
30;29 The Research on Servo-Flexible Stamping Applied in Sheet Metal Forming of Tailored Blanks of Advanced High Strength Steel;316
30.1;Abstract;316
30.2;29.1 Introduction;316
30.3;29.2 Optimization Structure of B Pillar Blank;317
30.4;29.3 Numerical Simulation of Stamping;317
30.5;29.4 Numerical Studies of Servo-Flexible Stamping;319
30.6;29.5 Conclusion;321
30.7;References;322
31;30 Influence of Tread Structure Design Parameters on Tire Vibration Noise;323
31.1;Abstract;323
31.2;30.1 Introduction;323
31.3;30.2 Tire FEA Model and Test Verification;324
31.3.1;30.2.1 Tire FEA Model;324
31.3.2;30.2.2 Tire Modal Test;324
31.4;30.3 Tire Vibration Noise Analysis;327
31.4.1;30.3.1 Acoustic BEM;327
31.4.2;30.3.2 Tire Outer Contour Acoustic Contribution Analysis Model;328
31.4.3;30.3.3 Tire Vibration Noise Numerical Analysis;329
31.5;30.4 Influence of Tread Design Parameters on Tire Vibration Noise;330
31.5.1;30.4.1 Design of Experiments and Result Discussion;330
31.5.2;30.4.2 Analysis of Tire Noise Reduction;333
31.6;30.5 Conclusion;336
31.7;References;336
32;31 Control and Analysis of Gear Whine Noise in Automotive Transmission Oil Pump;337
32.1;Abstract;337
32.2;31.1 Introduction;337
32.3;31.2 Diagnosis of the Transmission Whine Noise;338
32.4;31.3 Analysis of Oil Pump Gear Whine Noise;339
32.4.1;31.3.1 The Model of Oil Pump External Gear;340
32.4.2;31.3.2 Analysis of Gear Transmission Error and Vibration Response;340
32.4.3;31.3.3 Sensitivity Analysis of Gear Macro-Geometry Parameter;342
32.4.4;31.3.4 Assembled Errors Analysis;343
32.4.5;31.3.5 Gear Refinement and Verification;344
32.5;31.4 Conclusion;345
32.6;References;346
33;32 The Structure Modal Analysis and Engineering Application of the Passenger Car Driver's Seat System;347
33.1;Abstract;347
33.2;32.1 Introduction;347
33.3;32.2 Seat Modal Analysis;348
33.3.1;32.2.1 Seat Structure Model;348
33.3.2;32.2.2 Equivalent Stiffness;350
33.3.3;32.2.3 Equivalent Mass;351
33.4;32.3 Seat Structure Modal Test;352
33.5;32.4 Seat Structure Mode Control Strategy;354
33.6;32.5 Engineering Application;357
33.7;32.6 Conclusion;360
33.8;Acknowledgments;361
33.9;References;361
34;33 Research on the Acoustical Characteristics of High Frequency Resonant Cavity and Its Application;362
34.1;Abstract;362
34.2;33.1 Introduction;362
34.3;33.2 Mechanism Analysis;363
34.3.1;33.2.1 Acoustical Principle of High Frequency Resonant Cavity;363
34.4;33.3 Research on Attenuation Characteristics of Single-Chamber High Frequency Resonant Cavity;365
34.5;33.4 Study on Acoustical Characteristics of Multi-cavity Parallel High Frequency Resonant Cavity;366
34.5.1;33.4.1 The Definition of Multi-cavity Parallel High Frequency Resonant Cavity;366
34.5.2;33.4.2 Study on Acoustical Characteristics of Multi-cavity Parallel High Frequency Resonant Cavity;366
34.6;33.5 Applications of Multi-cavity Parallel High Frequency Resonant Cavity;369
34.6.1;33.5.1 High Frequency Resonant Cavity;369
34.7;33.6 Conclusion;370
34.8;Acknowledgments;371
34.9;References;371
35;34 Analysis on Optimization of Mirrors to Reduce High-Speed Wind Noise;372
35.1;Abstract;372
35.2;34.1 Introduction;373
35.3;34.2 Comparison of Original Shape and Optimized Shape of the Mirror;373
35.3.1;34.2.1 Creating Simulation Models;373
35.3.2;34.2.2 Comparison of Original Mirror and Optimized Mirror;375
35.4;34.3 Experimental Analysis of Optimization of Side Mirrors;376
35.4.1;34.3.1 Wind Tunnel Test Validation;376
35.4.2;34.3.2 Validation of Sealing for Side Mirrors;376
35.5;34.4 Conclusion;379
35.6;References;379
36;35 Analysis of Pressure Distribution Between Human and Seat for Evaluation of Automotive Seating Comfort;380
36.1;Abstract;380
36.2;35.1 Introduction;380
36.3;35.2 Method;381
36.3.1;35.2.1 Test Subjects;381
36.3.2;35.2.2 Test Equipment;381
36.3.3;35.2.3 Experimental Setup;382
36.3.4;35.2.4 Experimental Procedure;383
36.4;35.3 Analysis;384
36.4.1;35.3.1 The Correlation Between Pressure and Comfort;385
36.4.2;35.3.2 The Correlation Between Pressure Gradient and Comfort;386
36.4.3;35.3.3 The Correlation Between Contact Area and Comfort;389
36.4.4;35.3.4 The Correlation Between Percentage of Load and Comfort;390
36.5;35.4 Discussion;390
36.6;35.5 Conclusion;391
36.7;References;392
37;36 Heavy Vehicle Seat Foam Evaluation of Static and Dynamic Comfort by Body Pressure Sensors;393
37.1;Abstract;393
37.2;36.1 Introduction;394
37.3;36.2 Static Seating Comfort Evaluation;395
37.3.1;36.2.1 Method;395
37.3.2;36.2.2 Result;398
37.3.2.1;36.2.2.1 Subjective Evaluation;398
37.3.2.2;36.2.2.2 Physical Characteristics;400
37.3.2.3;36.2.2.3 Body Pressure Distribution;400
37.4;36.3 Dynamic Riding Comfort Evaluation;403
37.4.1;36.3.1 Method;403
37.4.2;36.3.2 Result;403
37.5;36.4 Discussion;405
37.6;36.5 Conclusion;406
37.7;Acknowledgments;407
37.8;References;407
38;37 Research on Methods of MDB Test;408
38.1;Abstract;408
38.2;37.1 Introduction;408
38.3;37.2 Side Impact Test Protocols;409
38.4;37.3 Influence of Test Parameters;410
38.4.1;37.3.1 Design of Experiment;410
38.4.2;37.3.2 Analysis of Test Result;411
38.5;37.4 Analysis of Typical Test Protocols;414
38.6;37.5 Conclusion;418
38.7;References;419
39;38 Optimal Analysis of Occupant Restraint System for Frontal Female Passenger Base on Multiple Factor Variance Analysis;420
39.1;Abstract;420
39.2;38.1 Introduction;420
39.3;38.2 Materials and Methods;421
39.3.1;38.2.1 Simulation Model with Male Dummy;421
39.3.2;38.2.2 Correlation of Simulation Model with Test Results;422
39.3.3;38.2.3 Simulation Model with Female Dummy;423
39.4;38.3 Results;426
39.4.1;38.3.1 Optimization Parameters and Its Levels;426
39.4.2;38.3.2 Influence of Three Factors on Relative RR;427
39.5;38.4 Discussion;429
39.6;38.5 Conclusion;429
39.7;References;429
40;39 A Dynamic Modeling Scheme of Vehicle Leaf Spring and Its Application;431
40.1;Abstract;431
40.2;39.1 Introduction;431
40.3;39.2 Modelling of Leaf Spring;432
40.4;39.3 Simulation of the Vehicle;435
40.5;39.4 Conclusion;437
40.6;References;437
41;40 Research on Factors Leading to Variant Aerodynamic Drag Coefficient of Different Cabriolets;438
41.1;Abstract;438
41.2;40.1 Introduction;438
41.3;40.2 Research Object;439
41.4;40.3 Simulation Set Up;439
41.5;40.4 Validation;441
41.6;40.5 Cd Comparison;441
41.7;40.6 Analysis of Reason for Cd Variation;442
41.7.1;40.6.1 Eddy Dissipation;442
41.7.1.1;40.6.1.1 Eddy Formation and Development;442
41.7.1.2;40.6.1.2 Effect of Eddy Dissipation on Cd;443
41.7.2;40.6.2 Flow Separation;447
41.7.3;40.6.3 Pressure Variation;447
41.8;40.7 Conclusion;447
41.9;References;448
42;41 Finite Element Analysis and Fatigue Analysis of Control Arm;449
42.1;Abstract;449
42.2;41.1 Introduction;449
42.3;41.2 Modal Analysis of Control Arm;450
42.4;41.3 Experimental Modal Analysis of Control Arm;451
42.4.1;41.3.1 Test System Composition;451
42.4.2;41.3.2 Comparison of Modal Experiment and Simulation Results;452
42.5;41.4 Control Arm Force and Multi-body Dynamics Analysis;452
42.5.1;41.4.1 Through Rough Road;452
42.5.2;41.4.2 Emergency Braking Conditions;453
42.5.3;41.4.3 Steering Conditions;453
42.6;41.5 Strength Analysis of Control Arm;454
42.6.1;41.5.1 Strength Analysis Under Rough Road Conditions;454
42.6.2;41.5.2 Strength Analysis Under Braking Conditions;455
42.6.3;41.5.3 Strength Analysis Under Turning Conditions;456
42.7;41.6 Fatigue Analysis of Control Arm;458
42.7.1;41.6.1 Acquisition of Load Time History;458
42.7.2;41.6.2 Fatigue Analysis;458
42.8;41.7 Conclusion;459
42.9;References;459
43;42 Compared Vehicle Body Fatigue Analysis Based on VPG and Experimental Road Load Data;461
43.1;Abstract;461
43.2;42.1 Introduction;461
43.3;42.2 Building Virtual Proving Ground;462
43.3.1;42.2.1 Building Typical Pavement;462
43.3.2;42.2.2 Building Rough Road;463
43.4;42.3 Load Analysis in Virtual Proving Ground;464
43.5;42.4 Body Fatigue Analysis Comparison;465
43.6;42.5 Conclusion;468
43.7;References;468
44;43 Lightweight Design of BIW Based on Stiffness and Mode;469
44.1;Abstract;469
44.2;43.1 Introduction;469
44.3;43.2 Establishment of Optimization Model;470
44.3.1;43.2.1 Optimization Model of BIW Structure;470
44.3.2;43.2.2 Finite Element Model of BIW;471
44.4;43.3 Project Design of Car Body Lightweight;471
44.5;43.4 Analysis of Lightweight Car Body Design Instance;472
44.5.1;43.4.1 Basic Model Data and Determination of the Target Value;473
44.5.2;43.4.2 Optimization of the White Body;473
44.5.3;43.4.3 Test Comparison Verification;475
44.6;43.5 Conclusion;476
44.7;References;476
45;44 A Method for Truck Frame Strength Analysis with Simplified Suspension Model;477
45.1;Abstract;477
45.2;44.1 Introduction;477
45.3;44.2 Equivalent Beam Method for Leaf Spring;478
45.4;44.3 Simplified Method of Main-Auxiliary Leaf Spring;479
45.5;44.4 Analysis Case;479
45.5.1;44.4.1 Frame and Simplified Suspension Model;479
45.5.2;44.4.2 Load Case;480
45.5.3;44.4.3 Analysis Results;481
45.5.4;44.4.4 Optimization Measures;482
45.5.5;44.4.5 Optimization Results;482
45.6;44.5 Conclusion;483
45.7;References;483
46;45 Research on Nonlinear Dynamics Simulation of Heavy Truck in Time Domain;485
46.1;Abstract;485
46.2;45.1 Introduction;485
46.3;45.2 Basic Theory;486
46.3.1;45.2.1 Explicit Dynamics;486
46.3.2;45.2.2 Implicit Dynamics;487
46.3.3;45.2.3 Implicit Static Solution;488
46.3.4;45.2.4 Selection and Application of Solver;488
46.4;45.3 Simulation of Components;488
46.4.1;45.3.1 Leaf Spring Model;488
46.4.2;45.3.2 Tire Model;489
46.4.3;45.3.3 Frame Model;491
46.4.4;45.3.4 Simulation of Bushing and Shock Absorber;491
46.4.5;45.3.5 Assemble Model of a Truck;491
46.5;45.4 Simulation of Full Truck;493
46.5.1;45.4.1 Frequency Simulation of Front Axle Suspension System;493
46.5.2;45.4.2 Validating Simulation with Step Input Experiment;493
46.5.3;45.4.3 Time Domain Stress Simulation in the Washboard Road Condition;495
46.6;45.5 Conclusion;496
46.7;References;497
47;46 Static Shift Performance Evaluation Index and Optimization Measures for Manual Transmission in Passenger Car;498
47.1;Abstract;498
47.2;46.1 Introduction;498
47.3;46.2 Manual Transmission Static Shift Performance Evaluation Item Analysis;499
47.3.1;46.2.1 Shift Force and Consistency;499
47.3.2;46.2.2 Shift Smoothness;500
47.3.3;46.2.3 Shifting Suction Feeling;501
47.3.4;46.2.4 Cross Shifting Performance;501
47.4;46.3 Static Select and Shift Performance of Manual Transmission Improvement Strategy Analysis;502
47.4.1;46.3.1 Shift Suction Feeling Improvement Strategy Analysis;502
47.4.1.1;46.3.1.1 Shift Mechanism Body Shift Curve Profile;503
47.4.1.2;46.3.1.2 Simulation Shift Curve;504
47.4.1.3;46.3.1.3 The Test Results;505
47.4.2;46.3.2 Analysis of Shift Smoothness Performance Improvement Measures;506
47.4.2.1;46.3.2.1 Synchronizer Steel Ball Groove Profile;506
47.4.2.2;46.3.2.2 Simulation Shift Curve;506
47.4.3;46.3.3 Cross Shift Performance;507
47.5;46.4 Conclusion;510
47.6;References;511
48;47 Ride Comfort Simulation and Abnormal Vibration Improvement of a Commercial Vehicle;512
48.1;Abstract;512
48.2;47.1 Introduction;512
48.3;47.2 Problem Descriptions and Test;512
48.3.1;47.2.1 Establish a Virtual Prototype Model of the Vehicle;513
48.3.2;47.2.2 Simulation and Verification for Whole Vehicle;514
48.4;47.3 Optimization of Vehicle Ride Comfort;515
48.4.1;47.3.1 Optimization Goal;515
48.4.2;47.3.2 Optimization Variables;515
48.4.3;47.3.3 Constraint Conditions;516
48.4.4;47.3.4 Optimization and Test Results;516
48.5;47.4 Conclusion;517
48.6;References;518
49;48 The Study of Vehicle Dynamics Modeling Method Based on the Characteristics of Suspension and Steering Systems;519
49.1;Abstract;519
49.2;48.1 Modeling Method;520
49.2.1;48.1.1 Relationship Between Suspension and Wheels;520
49.2.2;48.1.2 Relationship Between Steering and Wheels;521
49.3;48.2 Model Description;522
49.3.1;48.2.1 Vehicle Parameters;522
49.3.2;48.2.2 Tires;522
49.3.3;48.2.3 Model DOFs;522
49.4;48.3 Model Verification;523
49.5;48.4 Conclusion;525
49.6;References;526
50;49 Study on Coaxial Parallel HEV Automatic Clutch Torque Estimation;527
50.1;Abstract;527
50.2;49.1 Introduction;527
50.3;49.2 HEV Powertrain Model;528
50.4;49.3 The Clutch Torque Estimation Model Based on Kalman Filtering Arithmetic;529
50.5;49.4 Clutch Torque Estimation and Simulation Analysis in HEV Mode-Switch;531
50.6;49.5 Conclusion;533
50.7;References;534
51;50 Study on High-Strength Steel Spot Welding Process Design and Optimization Based on SORPAS;535
51.1;Abstract;535
51.2;50.1 Introduction;535
51.3;50.2 Basic Principles of Spot Welding;536
51.3.1;50.2.1 Principles;536
51.3.2;50.2.2 Key Factors Affecting the Process and Quality of Spot Welding;537
51.3.3;50.2.3 Analysis of Spot Welding Cycle;539
51.3.4;50.2.4 Design and Optimization of Process Parameters for Spot Welding;539
51.4;50.3 The Introduction of SORPAS;540
51.5;50.4 Finite Element Modelling and Optimization Calculation of Spot Welding;541
51.5.1;50.4.1 B170P1, B210P1 Analysis of Spot Welding;541
51.5.2;50.4.2 Solder Joint Working Condition;542
51.5.3;50.4.3 Spot Welding Model;543
51.5.4;50.4.4 Loading;544
51.5.5;50.4.5 Simulation and Optimization Results;544
51.6;50.5 Verification by Actual Welding Test;546
51.7;50.6 Conclusion;548
51.8;References;548
52;51 Off-Cycle Technology Evaluation for Engine Stop-Start;549
52.1;Abstract;549
52.2;51.1 Introduction;550
52.3;51.2 Simulation;551
52.3.1;51.2.1 Vehicle Test Cycle;551
52.3.2;51.2.2 Vehicle Specifications;551
52.3.3;51.2.3 Unified Model;551
52.3.4;51.2.4 Method;552
52.3.4.1;51.2.4.1 Method 1;552
52.3.4.2;51.2.4.2 Method 2;553
52.3.4.3;51.2.4.3 Method 3;553
52.3.4.4;51.2.4.4 Method 4;553
52.4;51.3 Results and Discussions;554
52.4.1;51.3.1 Fuel Consumption Result;554
52.4.2;51.3.2 Off-cycle Credit Result;554
52.5;51.4 Summary and Conclusion;556
52.6;References;557
53;52 Power-Loss Estimation for Low-Voltage Automotive PMSM Inverter;558
53.1;Abstract;558
53.2;52.1 Introduction;558
53.3;52.2 Power Loss Model of MOSFET;559
53.3.1;52.2.1 Switching Characteristic of MOSFET;560
53.3.2;52.2.2 Switching Power Loss of MOSFET;561
53.3.3;52.2.3 Conduction Power Loss of MOSFET;563
53.4;52.3 Power-Loss for SVPWM Inverter;564
53.4.1;52.3.1 Control Model of SVPWM;564
53.4.2;52.3.2 Conduction Power Loss Calculation Model of MOSFET;566
53.4.3;52.3.3 Conduction Power Loss Calculation Model of Body Diode;569
53.4.4;52.3.4 Switching Power Loss Calculation Model of MOSFET;570
53.4.5;52.3.5 Inverter Power Loss Calculation Model;571
53.5;52.4 Simulation;571
53.6;52.5 Conclusion;574
53.7;References;574
54;53 A Distribution-Based Model for Electric/Electronic Architectures of Automotive;576
54.1;Abstract;576
54.2;53.1 Introduction;576
54.3;53.2 Distribution in-Vehicle Network Architecture;577
54.3.1;53.2.1 Centralized Electric/Electronic Architectures of Automotive;578
54.3.2;53.2.2 Distributed Electric/Electronic Architectures of Automotive;579
54.3.3;53.2.3 Characteristics of Electric/Electronic Architectures of Automotive;580
54.4;53.3 The Design Method of the Electric/Electronic Architectures of Automotive;581
54.4.1;53.3.1 The Design Principles of the Distributed Network Architecture;582
54.4.2;53.3.2 Vehicle Coordination Control;583
54.5;53.4 Verification and Analysis of the Prototype of Electric/Electronic Architectures of Automotive;583
54.5.1;53.4.1 Each ECU Functional Analysis;583
54.5.2;53.4.2 ECU Network Optimization;585
54.5.3;53.4.3 Design of Network Architecture;586
54.6;53.5 Conclusion;587
54.7;Acknowledgments;587
54.8;References;587
55;54 An Advanced Structural Analysis Method for Connector Terminal Based on Multi-step Forming;588
55.1;Abstract;588
55.2;54.1 Introduction;588
55.3;54.2 Stamping-Structural Alliance Analysis Method;590
55.4;54.3 Multi-step Stamping Forming Analysis;590
55.4.1;54.3.1 Hardening Constitutive Model of Material;590
55.4.2;54.3.2 FEM for Multi-step Bending Forming and Its Spring-Back;591
55.4.3;54.3.3 Multi-step Forming Analysis Results;591
55.5;54.4 Structural Analysis for Formed Terminal;594
55.5.1;54.4.1 Importing the Formed Terminal, Mapping Hardening Material, and Residual Stress;594
55.5.2;54.4.2 Structural Analysis Results;594
55.6;54.5 Discussion and Conclusion;595
55.6.1;54.5.1 Discussion;595
55.6.2;54.5.2 Conclusion;597
55.7;Acknowledgments;597
55.8;References;597
56;55 Fuel Consumption Optimization for an Automatic Transmission Passenger Vehicle;598
56.1;Abstract;598
56.2;55.1 Introduction;598
56.3;55.2 Analysis of the Original Calibration Data;599
56.4;55.3 Fuel Consumption Reduction Solution;600
56.4.1;55.3.1 Automatic Transmission Gear-Shift Curve;600
56.4.2;55.3.2 Deceleration Fuel Cut-off Optimization;601
56.4.3;55.3.3 Idle Speed Calibration Optimization;603
56.5;55.4 Effect Verification;603
56.5.1;55.4.1 Drivability and Emission Verification;603
56.5.2;55.4.2 Fuel Consumption Reduction Result;604
56.5.2.1;55.4.2.1 Actual Driving Fuel Consumption in the City Driving Condition;604
56.5.2.2;55.4.2.2 Fuel Consumption in NEDC Cycle;605
56.6;55.5 Summary;607
56.7;References;608
57;56 Research of Diagnosis of High-Pressure Common Rail System Based on Real-Time Model;609
57.1;Abstract;609
57.2;56.1 Model Development;610
57.2.1;56.1.1 Model Structure;610
57.2.2;56.1.2 Analyses and Implementation of Model Development;610
57.2.2.1;56.1.2.1 Implementation of Model Development;610
57.2.2.2;56.1.2.2 Implementation of Diagnosis Process;612
57.2.2.3;56.1.2.3 Fault Handling;612
57.3;56.2 Rapid Prototype and Test Bed Calibration and Validation;613
57.3.1;56.2.1 Data Calibration;613
57.3.2;56.2.2 Algorithm Validation Based on Engine Test Bed;613
57.4;56.3 Vehicle Validation Test;617
57.5;56.4 Conclusion;618
57.6;References;618
58;57 Road Friction Coefficient Estimation by Using Lateral Dynamics Based on In-Wheel Motor Driven Electric Vehicle;619
58.1;Abstract;619
58.2;57.1 Introduction;619
58.3;57.2 Estimation of Longitudinal Forces;620
58.4;57.3 Vehicle and Tire Models;622
58.5;57.4 Estimation Method;624
58.6;57.5 Simulation Results;625
58.7;57.6 Conclusion;626
58.8;References;626