China Society of Automotive Engineers | Proceedings of SAE-China Congress 2015: Selected Papers | E-Book | sack.de
E-Book

E-Book, Englisch, Band 364, 626 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

China Society of Automotive Engineers Proceedings of SAE-China Congress 2015: Selected Papers

E-Book, Englisch, Band 364, 626 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-981-287-978-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



These proceedings gather outstanding papers submitted to the 2015 SAE-China Congress, the majority of which are from China, the biggest car maker as well as most dynamic car market in the world. The book covers a wide range of automotive topics, presenting the latest technical achievements in the industry. Many of the approaches presented can help technicians to solve the practical problems that most affect their daily work.
China Society of Automotive Engineers Proceedings of SAE-China Congress 2015: Selected Papers jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Contents;6
2;1 Optimization and Improvement of Off-Road Vehicle Tail Door System;12
2.1;Abstract;12
2.2;1.1 Introduction;12
2.3;1.2 Problem Description;13
2.4;1.3 Analysis;13
2.4.1;1.3.1 Weak Stiffness and Strength on Tail Frame;13
2.4.2;1.3.2 Non-conforming Hinge in Design Verification Test;15
2.4.3;1.3.3 Weak Stiffness and Strength of Tail Door System;17
2.4.4;1.3.4 Unreasonable Tail Door Accessories Layout and Design;18
2.5;1.4 Solutions;20
2.5.1;1.4.1 Optimization of Tail Frame Structure and Improvement of Structure Stiffness;20
2.5.2;1.4.2 Optimization of Tail Door Hinge Structure to Improve Hinge Stiffness;23
2.5.3;1.4.3 Optimization of Hinge Reinforcement Panel and Application of Mounting Pad to Improve the Stiffness and Strength of Tail Door;24
2.5.4;1.4.4 Optimization the Tail Door Accessories Layout and Design;24
2.6;1.5 CAE Analysis;27
2.7;1.6 Road Test Verification;28
2.8;1.7 Conclusion;28
2.9;References;28
3;2 Analysis on Lock Problem in Frontal Collision for Mini Vehicle;29
3.1;Abstract;29
3.2;2.1 Introduction;29
3.3;2.2 Classifications of Car Doors and Car Door Latch Systems;30
3.4;2.3 Stress Analysis on Sliding Door Latch System;32
3.4.1;2.3.1 Acceleration Analysis on the Vehicle's B Pillar;32
3.4.2;2.3.2 Stress Analysis on the Sliding Door's Lock Mechanism;32
3.5;2.4 Improvement Plans for the Sliding Door's Lock Mechanism;34
3.5.1;2.4.1 Plan One: Adjust the Torsion Spring Torque;35
3.5.2;2.4.2 Plan Two: Adjust the Inertia Moment of the Lock Switching Panel;36
3.5.3;2.4.3 Test Verification;39
3.6;2.5 Conclusion;40
3.7;References;40
4;3 Development and Application of Intelligent Diesel Idling Start/Stop Technology for Commercial Vehicle;41
4.1;Abstract;41
4.2;3.1 Introduction;41
4.3;3.2 Scheme of Diesel Start-Stop Technology;42
4.4;3.3 Development Work of Intelligent Diesel Start-Stop;43
4.5;3.4 Field Test of Start-Stop Engine in City Bus;47
4.6;3.5 Conclusion;50
4.7;References;50
5;4 Kinematics and K&C Experiment of a Rectilinear Rear Independent Suspension;51
5.1;Abstract;51
5.2;4.1 Introduction;51
5.3;4.2 Kinematic Analysis;52
5.4;4.3 K&C Experiment and Discussion;55
5.5;4.4 Conclusion;58
5.6;References;58
6;5 Flatness-Based Vehicle Coupled Control for Steering Stability and Path Tracking;59
6.1;Abstract;59
6.2;5.1 Introduction;59
6.3;5.2 Vehicle Steering and Driving/Breaking Model;60
6.4;5.3 The Target Path and Vehicle Variables;61
6.4.1;5.3.1 Target Path;61
6.4.2;5.3.2 Target Stable State;62
6.5;5.4 Flatness-Based Control;63
6.5.1;5.4.1 Differential Flatness Theory;63
6.5.2;5.4.2 Controller Design;63
6.6;5.5 Simulation Results;65
6.7;5.6 Conclusion;69
6.8;Acknowledgments;70
6.9;References;70
7;6 Analysis of Parameter Matching Characteristics for Centrifugal Pendulum Vibration Absorber;71
7.1;Abstract;71
7.2;6.1 Introduction;72
7.3;6.2 The Structure of the Vibration Absorber;72
7.4;6.3 The Model of Centrifugal Pendulum Vibration Absorber;73
7.4.1;6.3.1 Fixed Pendulum Length Case;74
7.4.2;6.3.2 Fluid Pendulum Length Case;75
7.4.3;6.3.3 Natural Frequency of the Absorber;76
7.5;6.4 The Mass Parameter Matching Characteristic of the Pendulum Block;77
7.6;6.5 The Parameter Matching Characteristics of Pendulum Paths;79
7.6.1;6.5.1 Circular Pendulum Path;79
7.6.2;6.5.2 Elliptical Pendulum Path;79
7.6.3;6.5.3 Polynomial Pendulum Path;80
7.6.4;6.5.4 Analysis of Pendulum Path Parameter Matching;82
7.7;6.6 Conclusion;83
7.8;References;83
8;7 Active Suspension Control for Wheel-Drive Electric Vehicle Based on Vibration Absorber;85
8.1;Abstract;85
8.2;7.1 Introduction;85
8.3;7.2 Analysis of the Vibration Absorber Model;86
8.4;7.3 Suspension Parameter Modeling;90
8.4.1;7.3.1 Parameter Selection;90
8.4.2;7.3.2 RMS Response Analysis and Optimization;90
8.5;7.4 Design of the FxLMS Controller for Electromagnetic Active Suspension;92
8.5.1;7.4.1 Algorithm Principle of FxLMS;92
8.5.2;7.4.2 FxLMS Algorithm Based on the Half-Car Model;92
8.6;7.5 Simulation Result;93
8.7;7.6 Conclusion;95
8.8;References;96
9;8 Design and Optimization of Halbach Active Suspension Actuator of Vehicle;97
9.1;Abstract;97
9.2;8.1 Introduction;97
9.3;8.2 Structural Design of Actuator for Active Suspension;98
9.4;8.3 Analytical Model of Halbach Tubular Modular Permanent-Magnet Linear Actuator;101
9.5;8.4 Sensitivity Analysis and Optimization for the Parameters of Linear Actuator;102
9.5.1;8.4.1 Local Sensitivity Analysis for the Parameters of Actuator;102
9.5.2;8.4.2 Optimization of Magnet Based on Gap Flux;104
9.5.3;8.4.3 Optimization of Slot Based on Induced EMF;105
9.6;8.5 Analysis for Electromagnetic Active Force of Actuator;107
9.6.1;8.5.1 EM Force Ripple Analysis;107
9.6.2;8.5.2 Matching Analysis of EM Force and Suspension Active Force;109
9.7;8.6 Conclusion;109
9.8;References;110
10;9 Study of A- and B- Substituted Perovskite CDPF Catalyst and Its' Catalytic Activity;111
10.1;Abstract;111
10.2;9.1 Introduction;111
10.3;9.2 Experimental;112
10.3.1;9.2.1 Catalyst Synthesis;112
10.3.2;9.2.2 SEM/EDS;112
10.3.3;9.2.3 XRD;112
10.3.4;9.2.4 TG;113
10.4;9.3 Results and Analysis;113
10.4.1;9.3.1 SEM/EDS;113
10.4.2;9.3.2 XRD;114
10.4.3;9.3.3 TG;115
10.4.4;9.3.4 Activation Energy Calculation;116
10.5;9.4 Summary;117
10.6;References;118
11;10 Gasoline Particulate Filter Technology for CHINA Stage-6 Emission Legislation;119
11.1;Abstract;119
11.2;10.1 Regulation Background;119
11.3;10.2 Design Guidelines of Gasoline Particulate Filter;121
11.3.1;10.2.1 GPF Concepts;121
11.3.2;10.2.2 GPF Parameters;121
11.3.3;10.2.3 Coated GPF;122
11.3.4;10.2.4 GPF Layout Styles;122
11.3.5;10.2.5 Validation Results;123
11.4;10.3 GPF Regeneration;123
11.5;10.4 Summary;125
11.6;References;125
12;11 Thermal Runaway Propagation Within Module Consists of Large Format Li-Ion Cells;126
12.1;Abstract;126
12.2;11.1 Introduction;126
12.3;11.2 Experiment Settings;127
12.4;11.3 Model Structure;128
12.5;11.4 Result and Discussion;128
12.5.1;11.4.1 EV-ARC Test;128
12.5.2;11.4.2 Thermal Runaway Initiation: Nail Penetration Test;129
12.5.3;11.4.3 Thermal Runaway Propagation Within a Battery Module;129
12.5.4;11.4.4 Heat Transfer Amount Through Different Paths During Thermal Runaway Propagation;130
12.5.5;11.4.5 Preventing Thermal Runaway Propagation Within a Battery Module;131
12.6;11.5 Conclusion;132
12.7;References;132
13;12 Depth Research on Brake Energy Regeneration Evaluation and Test Method of Electric Driven Vehicle;133
13.1;Abstract;133
13.2;12.1 Evaluation Index;134
13.2.1;12.1.1 Safety;134
13.2.2;12.1.2 Efficiency of Energy Recovery;134
13.2.2.1;12.1.2.1 Vehicle Force Analysis;134
13.2.2.2;12.1.2.2 Energy Flow Model;135
13.3;12.2 Test Method;137
13.4;12.3 Real Vehicle Test;138
13.4.1;12.3.1 Test Vehicle Parameter;138
13.4.2;12.3.2 Test Result;138
13.4.2.1;12.3.2.1 Braking Safety;138
13.4.2.2;12.3.2.2 Braking Energy Recycling Efficiency Test;139
13.5;12.4 Conclusion;142
13.6;References;142
14;13 Secondary Dendrite Arm Spacing Study of Partition in Aluminumalloy Cylinder Heads;143
14.1;Abstract;143
14.2;13.1 Introduction;143
14.2.1;13.1.1 Status;143
14.2.2;13.1.2 Significance of This Study;144
14.2.3;13.1.3 Secondary Dendrite Arm Spacing (SDAS);144
14.3;13.2 Experiment Procedure;145
14.3.1;13.2.1 Aluminum Alloy Cylinder Heads Introduce of the Experimentations;145
14.3.2;13.2.2 Sampling Location;146
14.3.3;13.2.3 SDAS Tests of Raw Cylinder Heads;146
14.3.4;13.2.4 Mechanical Characters Test of Raw Cylinder Head;146
14.3.5;13.2.5 Cylinder Head Sample's Reliability Test of Assemble Engines;147
14.3.6;13.2.6 SDAS Measure for the Cylinder Heads Passed Reliability Test;147
14.4;13.3 Result of the Experiment;148
14.4.1;13.3.1 SDAS (The Secondary Dendrite Arm Spacing) of the Raw Cylinder Head;148
14.4.2;13.3.2 Mechanical Property Test Results of the Raw Cylinder Head;148
14.4.3;13.3.3 Reliability Test of the Cylinder Head;149
14.4.4;13.3.4 SDAS of the Reliability Test's Cylinder Head Sample;149
14.5;13.4 Discussion;150
14.5.1;13.4.1 Casting Process of Cylinder Heads;150
14.5.2;13.4.2 Mechanical Characteristics and the Total Stress of the Cylinder Head;151
14.6;13.5 Conclusion;151
14.7;References;152
15;14 Application of MQL in Engine Manufacturing;153
15.1;Abstract;153
15.2;14.1 Foreword;153
15.3;14.2 MQL Technical Principle;154
15.3.1;14.2.1 Fundamental;154
15.3.2;14.2.2 MQL Advantage;154
15.3.2.1;14.2.2.1 Environmental Effect;154
15.3.2.2;14.2.2.2 Occupational Health;154
15.3.2.3;14.2.2.3 Cost Effect;154
15.4;14.3 Application of MQL Technology;155
15.5;14.4 Application of MQL in Engine Manufacturing;156
15.5.1;14.4.1 Influence of Thermal Deformation in Process System;157
15.5.2;14.4.2 Change of Machining Process;157
15.5.3;14.4.3 Part of the Process Is not Suitable for MQL Technology;158
15.5.3.1;14.4.3.1 Milling Face;158
15.5.3.2;14.4.3.2 Turn-Turn Broaching, External Milling;158
15.5.3.3;14.4.3.3 Drilling Deep Blind Holes;159
15.5.3.4;14.4.3.4 Drilling Diameter lessthan Phi 3 Holes;159
15.5.3.5;14.4.3.5 Internal Boring (The Cylinder Hole, Crankshaft Hole, Camshaft Hole);159
15.6;14.5 Application Prospect of MQL Technology;159
15.7;References;160
16;15 Study on Oil Injection Time Reducing of Engine;161
16.1;Abstract;161
16.2;15.1 Introduction;161
16.3;15.2 Modeling;162
16.3.1;15.2.1 Geometry;162
16.3.2;15.2.2 Computational Domain and Meshing;162
16.3.3;15.2.3 Case Setting;163
16.4;15.3 Result Analysis of Basic Model;164
16.5;15.4 Guiding Channel Structure Optimization;165
16.6;15.5 Other Factors that Affect Oil Injection Time;167
16.6.1;15.5.1 Oil Temperature;167
16.6.2;15.5.2 Height of Oil Channel's Inlet;168
16.7;15.6 Conclusion;169
16.8;References;170
17;16 Study of Control of Body Geometric Dimensions Precision;171
17.1;Abstract;171
17.2;16.1 Foreword;171
17.3;16.2 Text;172
17.3.1;16.2.1 Passing Rate of the Body;173
17.3.2;16.2.2 Process Capability Index;174
17.3.3;16.2.3 Judgment of Process Capability;176
17.3.4;16.2.4 Functional Dimension;177
17.4;16.3 Conclusion;178
18;17 Case Analysis of Typical Area of Body Corrosion;179
18.1;Abstract;179
18.2;17.1 The Skirt Component Corrosion, as Shown in Figs. 17.3 and 17.4;180
18.3;17.2 Corrosion of Wheel-Cover Component, as Shown in Figs. 17.9 and 17.10;183
18.4;17.3 Corrosion of Closer;185
18.5;17.4 Defects Such as the Sharp Edge, Burr, Welding Spot and Welding Slag;187
19;18 Development and Application of Dual UniValve System Based on a GDI Engine with SI/HCCI Dual Combustion Modes;190
19.1;Abstract;190
19.2;18.1 Introduction;190
19.3;18.2 Basic Geometry and Dynamics of Dual UniValve System;191
19.4;18.3 Test Results of Dual UniValve System;195
19.5;18.4 SI/HCCI Mode Switching Based on Dual UniValve System;199
19.6;18.5 Conclusion;199
19.7;Acknowledgments;200
19.8;References;200
20;19 Prediction of Effects of Intake Port and Chamber on Combustion Performance of Gasoline Engines;201
20.1;Abstract;201
20.2;19.1 Investigation Proposals;202
20.2.1;19.1.1 Geometry Model;203
20.2.2;19.1.2 Steady State Flow Test;203
20.3;19.2 Model Setup;204
20.3.1;19.2.1 Calculation Mesh;204
20.3.2;19.2.2 Boundary Condition and Initial Condition;205
20.3.3;19.2.3 Physical Model;205
20.3.4;19.2.4 Test Verification;206
20.4;19.3 Result Analysis;207
20.4.1;19.3.1 In-Cylinder Flow;207
20.4.2;19.3.2 Combustion and Emissions;209
20.5;19.4 Conclusion;212
20.6;References;213
21;20 Simulation Study of the Control Method of Adjustable Composite Supercharging System at Plateau;214
21.1;Abstract;214
21.2;20.1 Background;214
21.3;20.2 Engine Simulation Model;215
21.4;20.3 Study of the Control Method of the Adjustable Composite Supercharging System;216
21.5;20.4 Verification of Transient Switching Method of Composite Supercharging System;219
21.6;20.5 Conclusion;221
21.7;References;221
22;21 Emergency Dispatch Under Failure Condition of Urban Pickup and Delivery Task;222
22.1;Abstract;222
22.2;21.1 Introduction;222
22.3;21.2 Deal with Failed Customer in Classification;223
22.3.1;21.2.1 Intraday Customer Dynamic Dispatch;224
22.3.2;21.2.2 Tertian Customer Deletion;225
22.4;21.3 Emergency Dispatch of Failed Route;225
22.4.1;21.3.1 Failed Route Selection;226
22.4.2;21.3.2 Neighbour Search;226
22.4.3;21.3.3 Route Selection;227
22.4.4;21.3.4 Termination Condition;229
22.5;21.4 Calculation Example;230
22.6;21.5 Conclusion;231
22.7;References;232
23;22 Drivers' Lane Change Maneuver and Speed Behavior in Freeway Work Zones;233
23.1;Abstract;233
23.2;22.1 Introduction;234
23.3;22.2 Lane Change Definitions;234
23.4;22.3 Problem Statement;235
23.5;22.4 Research Objectives;235
23.6;22.5 Literature Review;236
23.7;22.6 Methodology;237
23.8;22.7 Data Collection;238
23.9;22.8 Lane Change Maneuvers Upstream of Work Zone;239
23.10;22.9 Logistic Regression Model;242
23.11;22.10 Conclusions;244
23.12;Acknowledgments;244
23.13;References;244
24;23 Feature-Based Automatic Modulation Recognition Design for Vehicular Network Communication;246
24.1;Abstract;246
24.2;23.1 Introduction;246
24.3;23.2 Development of the Automatic Modulation Recognition Process Using Common Features Templates;247
24.4;23.3 Algorithm for the Automatic Modulation Recognition Process;257
24.4.1;23.3.1 Procedure for Decision Block 1;257
24.4.2;23.3.2 Procedure for Decision Block 2;261
24.4.3;23.3.3 Procedure for Decision Block 3;262
24.4.4;23.3.4 Procedures for Other Decision Blocks;262
24.4.4.1;23.3.4.1 ASK and FSK Classifier Procedure;263
24.5;23.4 Simulation Experiment and Results;264
24.6;23.5 Results and Comparison;265
24.7;23.6 Conclusion;267
24.8;References;267
25;24 Recognition of Road Surface Condition Through an On-Vehicle Camera Using Multiple Classifiers;269
25.1;Abstract;269
25.2;24.1 Introduction;269
25.3;24.2 Theoretical Basis;270
25.3.1;24.2.1 Prior Research;270
25.3.2;24.2.2 Research Method;271
25.3.3;24.2.3 Innovation Point;271
25.4;24.3 Research Content and Concept;272
25.4.1;24.3.1 System Structure;272
25.4.2;24.3.2 Processing;273
25.4.2.1;24.3.2.1 Regions of Interest;273
25.4.2.2;24.3.2.2 Image Segmentation and Pre-processing;274
25.4.2.3;24.3.2.3 Classification;276
25.4.2.3.1;Tire Snippet Classification;277
25.4.2.3.2;Reflection Snippet Classification;278
25.4.2.3.3;Road Snippet Classification;278
25.4.2.4;24.3.2.4 Confidence Estimation and Result Interpretation;279
25.5;24.4 Conclusion and Outlook;280
25.6;References;281
26;25 Gas Separation Performance of Poly [1-(4-Trimethyl Silyl) Phenyl -2- Phenyl Acetylene] (Ptmsdpa)/Carbon Nanotubes (Cnts) Hybrid Composite Membrane;282
26.1;Abstract;282
26.2;25.1 Introduction;282
26.3;25.2 Experiment;283
26.3.1;25.2.1 Materials;283
26.3.2;25.2.2 Preparation and Characterization of Membrane;283
26.3.2.1;25.2.2.1 Preparation of PTMSDPA Membrane;283
26.3.2.2;25.2.2.2 Preparation of PTMSDPA/CNTs Composite Membrane;284
26.3.3;25.2.3 Gas Separation Experiment;284
26.4;25.3 Results and Discussion;284
26.4.1;25.3.1 Characterization of PTMSDPA/CNTs Hybrid Composite Membrane;284
26.4.2;25.3.2 Gas Permeability of PTMSDPA/CNTs Hybrid Composite Membrane;287
26.4.3;25.3.3 Effect of Structure of CNTs;288
26.5;25.4 Conclusion;288
26.6;References;288
27;26 Preparation and Properties of Carbon Fiber/Titanium Alloy Composite for Automobile;289
27.1;Abstract;289
27.2;26.1 Introduction;289
27.3;26.2 Experiment;290
27.3.1;26.2.1 Sample Preparation;290
27.3.2;26.2.2 Sample Characterization;290
27.4;26.3 Results and Discussion;293
27.4.1;26.3.1 Microstructure Characterization;293
27.4.2;26.3.2 Physical Characterization;293
27.4.3;26.3.3 Mechanical Characterization;294
27.5;26.4 Conclusion;295
27.6;References;295
28;27 On the Development of Automotive Composite Material Rear Bumper Beam;296
28.1;Abstract;296
28.2;27.1 Introduction;296
28.3;27.2 Composite Materials;297
28.4;27.3 Process for Composite Material Rear Bumper Beam;298
28.5;27.4 Development of Composite Material Rear Bumper Beam;300
28.5.1;27.4.1 Structure Design;300
28.5.2;27.4.2 CAE Analysis;301
28.5.2.1;27.4.2.1 Analysis on Low Speed Impact;301
28.5.2.2;27.4.2.2 Analysis on High Speed Impact;302
28.5.2.3;27.4.2.3 Analysis on Took Strength;303
28.5.3;27.4.3 Tests;304
28.5.3.1;27.4.3.1 Dimension Measurement;304
28.5.3.2;27.4.3.2 Performance Verification;304
28.5.4;27.4.4 Weight Reduction;304
28.5.5;27.4.5 Cost Analysis;304
28.6;27.5 Conclusion;306
28.7;References;307
29;28 Constitutive Analysis on Thermal-Mechanical Properties of WHT1300HF High Strength Steel;308
29.1;Abstract;308
29.2;28.1 Introduction;308
29.3;28.2 Experiment;309
29.4;28.3 Results and Discussion;310
29.4.1;28.3.1 Effect of Temperature and Strain Rate on Flow Properties;310
29.4.2;28.3.2 Constitutive Equation of Flow Behavior;311
29.5;28.4 Conclusion;314
29.6;Acknowledgement;314
29.7;References;314
30;29 The Research on Servo-Flexible Stamping Applied in Sheet Metal Forming of Tailored Blanks of Advanced High Strength Steel;316
30.1;Abstract;316
30.2;29.1 Introduction;316
30.3;29.2 Optimization Structure of B Pillar Blank;317
30.4;29.3 Numerical Simulation of Stamping;317
30.5;29.4 Numerical Studies of Servo-Flexible Stamping;319
30.6;29.5 Conclusion;321
30.7;References;322
31;30 Influence of Tread Structure Design Parameters on Tire Vibration Noise;323
31.1;Abstract;323
31.2;30.1 Introduction;323
31.3;30.2 Tire FEA Model and Test Verification;324
31.3.1;30.2.1 Tire FEA Model;324
31.3.2;30.2.2 Tire Modal Test;324
31.4;30.3 Tire Vibration Noise Analysis;327
31.4.1;30.3.1 Acoustic BEM;327
31.4.2;30.3.2 Tire Outer Contour Acoustic Contribution Analysis Model;328
31.4.3;30.3.3 Tire Vibration Noise Numerical Analysis;329
31.5;30.4 Influence of Tread Design Parameters on Tire Vibration Noise;330
31.5.1;30.4.1 Design of Experiments and Result Discussion;330
31.5.2;30.4.2 Analysis of Tire Noise Reduction;333
31.6;30.5 Conclusion;336
31.7;References;336
32;31 Control and Analysis of Gear Whine Noise in Automotive Transmission Oil Pump;337
32.1;Abstract;337
32.2;31.1 Introduction;337
32.3;31.2 Diagnosis of the Transmission Whine Noise;338
32.4;31.3 Analysis of Oil Pump Gear Whine Noise;339
32.4.1;31.3.1 The Model of Oil Pump External Gear;340
32.4.2;31.3.2 Analysis of Gear Transmission Error and Vibration Response;340
32.4.3;31.3.3 Sensitivity Analysis of Gear Macro-Geometry Parameter;342
32.4.4;31.3.4 Assembled Errors Analysis;343
32.4.5;31.3.5 Gear Refinement and Verification;344
32.5;31.4 Conclusion;345
32.6;References;346
33;32 The Structure Modal Analysis and Engineering Application of the Passenger Car Driver's Seat System;347
33.1;Abstract;347
33.2;32.1 Introduction;347
33.3;32.2 Seat Modal Analysis;348
33.3.1;32.2.1 Seat Structure Model;348
33.3.2;32.2.2 Equivalent Stiffness;350
33.3.3;32.2.3 Equivalent Mass;351
33.4;32.3 Seat Structure Modal Test;352
33.5;32.4 Seat Structure Mode Control Strategy;354
33.6;32.5 Engineering Application;357
33.7;32.6 Conclusion;360
33.8;Acknowledgments;361
33.9;References;361
34;33 Research on the Acoustical Characteristics of High Frequency Resonant Cavity and Its Application;362
34.1;Abstract;362
34.2;33.1 Introduction;362
34.3;33.2 Mechanism Analysis;363
34.3.1;33.2.1 Acoustical Principle of High Frequency Resonant Cavity;363
34.4;33.3 Research on Attenuation Characteristics of Single-Chamber High Frequency Resonant Cavity;365
34.5;33.4 Study on Acoustical Characteristics of Multi-cavity Parallel High Frequency Resonant Cavity;366
34.5.1;33.4.1 The Definition of Multi-cavity Parallel High Frequency Resonant Cavity;366
34.5.2;33.4.2 Study on Acoustical Characteristics of Multi-cavity Parallel High Frequency Resonant Cavity;366
34.6;33.5 Applications of Multi-cavity Parallel High Frequency Resonant Cavity;369
34.6.1;33.5.1 High Frequency Resonant Cavity;369
34.7;33.6 Conclusion;370
34.8;Acknowledgments;371
34.9;References;371
35;34 Analysis on Optimization of Mirrors to Reduce High-Speed Wind Noise;372
35.1;Abstract;372
35.2;34.1 Introduction;373
35.3;34.2 Comparison of Original Shape and Optimized Shape of the Mirror;373
35.3.1;34.2.1 Creating Simulation Models;373
35.3.2;34.2.2 Comparison of Original Mirror and Optimized Mirror;375
35.4;34.3 Experimental Analysis of Optimization of Side Mirrors;376
35.4.1;34.3.1 Wind Tunnel Test Validation;376
35.4.2;34.3.2 Validation of Sealing for Side Mirrors;376
35.5;34.4 Conclusion;379
35.6;References;379
36;35 Analysis of Pressure Distribution Between Human and Seat for Evaluation of Automotive Seating Comfort;380
36.1;Abstract;380
36.2;35.1 Introduction;380
36.3;35.2 Method;381
36.3.1;35.2.1 Test Subjects;381
36.3.2;35.2.2 Test Equipment;381
36.3.3;35.2.3 Experimental Setup;382
36.3.4;35.2.4 Experimental Procedure;383
36.4;35.3 Analysis;384
36.4.1;35.3.1 The Correlation Between Pressure and Comfort;385
36.4.2;35.3.2 The Correlation Between Pressure Gradient and Comfort;386
36.4.3;35.3.3 The Correlation Between Contact Area and Comfort;389
36.4.4;35.3.4 The Correlation Between Percentage of Load and Comfort;390
36.5;35.4 Discussion;390
36.6;35.5 Conclusion;391
36.7;References;392
37;36 Heavy Vehicle Seat Foam Evaluation of Static and Dynamic Comfort by Body Pressure Sensors;393
37.1;Abstract;393
37.2;36.1 Introduction;394
37.3;36.2 Static Seating Comfort Evaluation;395
37.3.1;36.2.1 Method;395
37.3.2;36.2.2 Result;398
37.3.2.1;36.2.2.1 Subjective Evaluation;398
37.3.2.2;36.2.2.2 Physical Characteristics;400
37.3.2.3;36.2.2.3 Body Pressure Distribution;400
37.4;36.3 Dynamic Riding Comfort Evaluation;403
37.4.1;36.3.1 Method;403
37.4.2;36.3.2 Result;403
37.5;36.4 Discussion;405
37.6;36.5 Conclusion;406
37.7;Acknowledgments;407
37.8;References;407
38;37 Research on Methods of MDB Test;408
38.1;Abstract;408
38.2;37.1 Introduction;408
38.3;37.2 Side Impact Test Protocols;409
38.4;37.3 Influence of Test Parameters;410
38.4.1;37.3.1 Design of Experiment;410
38.4.2;37.3.2 Analysis of Test Result;411
38.5;37.4 Analysis of Typical Test Protocols;414
38.6;37.5 Conclusion;418
38.7;References;419
39;38 Optimal Analysis of Occupant Restraint System for Frontal Female Passenger Base on Multiple Factor Variance Analysis;420
39.1;Abstract;420
39.2;38.1 Introduction;420
39.3;38.2 Materials and Methods;421
39.3.1;38.2.1 Simulation Model with Male Dummy;421
39.3.2;38.2.2 Correlation of Simulation Model with Test Results;422
39.3.3;38.2.3 Simulation Model with Female Dummy;423
39.4;38.3 Results;426
39.4.1;38.3.1 Optimization Parameters and Its Levels;426
39.4.2;38.3.2 Influence of Three Factors on Relative RR;427
39.5;38.4 Discussion;429
39.6;38.5 Conclusion;429
39.7;References;429
40;39 A Dynamic Modeling Scheme of Vehicle Leaf Spring and Its Application;431
40.1;Abstract;431
40.2;39.1 Introduction;431
40.3;39.2 Modelling of Leaf Spring;432
40.4;39.3 Simulation of the Vehicle;435
40.5;39.4 Conclusion;437
40.6;References;437
41;40 Research on Factors Leading to Variant Aerodynamic Drag Coefficient of Different Cabriolets;438
41.1;Abstract;438
41.2;40.1 Introduction;438
41.3;40.2 Research Object;439
41.4;40.3 Simulation Set Up;439
41.5;40.4 Validation;441
41.6;40.5 Cd Comparison;441
41.7;40.6 Analysis of Reason for Cd Variation;442
41.7.1;40.6.1 Eddy Dissipation;442
41.7.1.1;40.6.1.1 Eddy Formation and Development;442
41.7.1.2;40.6.1.2 Effect of Eddy Dissipation on Cd;443
41.7.2;40.6.2 Flow Separation;447
41.7.3;40.6.3 Pressure Variation;447
41.8;40.7 Conclusion;447
41.9;References;448
42;41 Finite Element Analysis and Fatigue Analysis of Control Arm;449
42.1;Abstract;449
42.2;41.1 Introduction;449
42.3;41.2 Modal Analysis of Control Arm;450
42.4;41.3 Experimental Modal Analysis of Control Arm;451
42.4.1;41.3.1 Test System Composition;451
42.4.2;41.3.2 Comparison of Modal Experiment and Simulation Results;452
42.5;41.4 Control Arm Force and Multi-body Dynamics Analysis;452
42.5.1;41.4.1 Through Rough Road;452
42.5.2;41.4.2 Emergency Braking Conditions;453
42.5.3;41.4.3 Steering Conditions;453
42.6;41.5 Strength Analysis of Control Arm;454
42.6.1;41.5.1 Strength Analysis Under Rough Road Conditions;454
42.6.2;41.5.2 Strength Analysis Under Braking Conditions;455
42.6.3;41.5.3 Strength Analysis Under Turning Conditions;456
42.7;41.6 Fatigue Analysis of Control Arm;458
42.7.1;41.6.1 Acquisition of Load Time History;458
42.7.2;41.6.2 Fatigue Analysis;458
42.8;41.7 Conclusion;459
42.9;References;459
43;42 Compared Vehicle Body Fatigue Analysis Based on VPG and Experimental Road Load Data;461
43.1;Abstract;461
43.2;42.1 Introduction;461
43.3;42.2 Building Virtual Proving Ground;462
43.3.1;42.2.1 Building Typical Pavement;462
43.3.2;42.2.2 Building Rough Road;463
43.4;42.3 Load Analysis in Virtual Proving Ground;464
43.5;42.4 Body Fatigue Analysis Comparison;465
43.6;42.5 Conclusion;468
43.7;References;468
44;43 Lightweight Design of BIW Based on Stiffness and Mode;469
44.1;Abstract;469
44.2;43.1 Introduction;469
44.3;43.2 Establishment of Optimization Model;470
44.3.1;43.2.1 Optimization Model of BIW Structure;470
44.3.2;43.2.2 Finite Element Model of BIW;471
44.4;43.3 Project Design of Car Body Lightweight;471
44.5;43.4 Analysis of Lightweight Car Body Design Instance;472
44.5.1;43.4.1 Basic Model Data and Determination of the Target Value;473
44.5.2;43.4.2 Optimization of the White Body;473
44.5.3;43.4.3 Test Comparison Verification;475
44.6;43.5 Conclusion;476
44.7;References;476
45;44 A Method for Truck Frame Strength Analysis with Simplified Suspension Model;477
45.1;Abstract;477
45.2;44.1 Introduction;477
45.3;44.2 Equivalent Beam Method for Leaf Spring;478
45.4;44.3 Simplified Method of Main-Auxiliary Leaf Spring;479
45.5;44.4 Analysis Case;479
45.5.1;44.4.1 Frame and Simplified Suspension Model;479
45.5.2;44.4.2 Load Case;480
45.5.3;44.4.3 Analysis Results;481
45.5.4;44.4.4 Optimization Measures;482
45.5.5;44.4.5 Optimization Results;482
45.6;44.5 Conclusion;483
45.7;References;483
46;45 Research on Nonlinear Dynamics Simulation of Heavy Truck in Time Domain;485
46.1;Abstract;485
46.2;45.1 Introduction;485
46.3;45.2 Basic Theory;486
46.3.1;45.2.1 Explicit Dynamics;486
46.3.2;45.2.2 Implicit Dynamics;487
46.3.3;45.2.3 Implicit Static Solution;488
46.3.4;45.2.4 Selection and Application of Solver;488
46.4;45.3 Simulation of Components;488
46.4.1;45.3.1 Leaf Spring Model;488
46.4.2;45.3.2 Tire Model;489
46.4.3;45.3.3 Frame Model;491
46.4.4;45.3.4 Simulation of Bushing and Shock Absorber;491
46.4.5;45.3.5 Assemble Model of a Truck;491
46.5;45.4 Simulation of Full Truck;493
46.5.1;45.4.1 Frequency Simulation of Front Axle Suspension System;493
46.5.2;45.4.2 Validating Simulation with Step Input Experiment;493
46.5.3;45.4.3 Time Domain Stress Simulation in the Washboard Road Condition;495
46.6;45.5 Conclusion;496
46.7;References;497
47;46 Static Shift Performance Evaluation Index and Optimization Measures for Manual Transmission in Passenger Car;498
47.1;Abstract;498
47.2;46.1 Introduction;498
47.3;46.2 Manual Transmission Static Shift Performance Evaluation Item Analysis;499
47.3.1;46.2.1 Shift Force and Consistency;499
47.3.2;46.2.2 Shift Smoothness;500
47.3.3;46.2.3 Shifting Suction Feeling;501
47.3.4;46.2.4 Cross Shifting Performance;501
47.4;46.3 Static Select and Shift Performance of Manual Transmission Improvement Strategy Analysis;502
47.4.1;46.3.1 Shift Suction Feeling Improvement Strategy Analysis;502
47.4.1.1;46.3.1.1 Shift Mechanism Body Shift Curve Profile;503
47.4.1.2;46.3.1.2 Simulation Shift Curve;504
47.4.1.3;46.3.1.3 The Test Results;505
47.4.2;46.3.2 Analysis of Shift Smoothness Performance Improvement Measures;506
47.4.2.1;46.3.2.1 Synchronizer Steel Ball Groove Profile;506
47.4.2.2;46.3.2.2 Simulation Shift Curve;506
47.4.3;46.3.3 Cross Shift Performance;507
47.5;46.4 Conclusion;510
47.6;References;511
48;47 Ride Comfort Simulation and Abnormal Vibration Improvement of a Commercial Vehicle;512
48.1;Abstract;512
48.2;47.1 Introduction;512
48.3;47.2 Problem Descriptions and Test;512
48.3.1;47.2.1 Establish a Virtual Prototype Model of the Vehicle;513
48.3.2;47.2.2 Simulation and Verification for Whole Vehicle;514
48.4;47.3 Optimization of Vehicle Ride Comfort;515
48.4.1;47.3.1 Optimization Goal;515
48.4.2;47.3.2 Optimization Variables;515
48.4.3;47.3.3 Constraint Conditions;516
48.4.4;47.3.4 Optimization and Test Results;516
48.5;47.4 Conclusion;517
48.6;References;518
49;48 The Study of Vehicle Dynamics Modeling Method Based on the Characteristics of Suspension and Steering Systems;519
49.1;Abstract;519
49.2;48.1 Modeling Method;520
49.2.1;48.1.1 Relationship Between Suspension and Wheels;520
49.2.2;48.1.2 Relationship Between Steering and Wheels;521
49.3;48.2 Model Description;522
49.3.1;48.2.1 Vehicle Parameters;522
49.3.2;48.2.2 Tires;522
49.3.3;48.2.3 Model DOFs;522
49.4;48.3 Model Verification;523
49.5;48.4 Conclusion;525
49.6;References;526
50;49 Study on Coaxial Parallel HEV Automatic Clutch Torque Estimation;527
50.1;Abstract;527
50.2;49.1 Introduction;527
50.3;49.2 HEV Powertrain Model;528
50.4;49.3 The Clutch Torque Estimation Model Based on Kalman Filtering Arithmetic;529
50.5;49.4 Clutch Torque Estimation and Simulation Analysis in HEV Mode-Switch;531
50.6;49.5 Conclusion;533
50.7;References;534
51;50 Study on High-Strength Steel Spot Welding Process Design and Optimization Based on SORPAS;535
51.1;Abstract;535
51.2;50.1 Introduction;535
51.3;50.2 Basic Principles of Spot Welding;536
51.3.1;50.2.1 Principles;536
51.3.2;50.2.2 Key Factors Affecting the Process and Quality of Spot Welding;537
51.3.3;50.2.3 Analysis of Spot Welding Cycle;539
51.3.4;50.2.4 Design and Optimization of Process Parameters for Spot Welding;539
51.4;50.3 The Introduction of SORPAS;540
51.5;50.4 Finite Element Modelling and Optimization Calculation of Spot Welding;541
51.5.1;50.4.1 B170P1, B210P1 Analysis of Spot Welding;541
51.5.2;50.4.2 Solder Joint Working Condition;542
51.5.3;50.4.3 Spot Welding Model;543
51.5.4;50.4.4 Loading;544
51.5.5;50.4.5 Simulation and Optimization Results;544
51.6;50.5 Verification by Actual Welding Test;546
51.7;50.6 Conclusion;548
51.8;References;548
52;51 Off-Cycle Technology Evaluation for Engine Stop-Start;549
52.1;Abstract;549
52.2;51.1 Introduction;550
52.3;51.2 Simulation;551
52.3.1;51.2.1 Vehicle Test Cycle;551
52.3.2;51.2.2 Vehicle Specifications;551
52.3.3;51.2.3 Unified Model;551
52.3.4;51.2.4 Method;552
52.3.4.1;51.2.4.1 Method 1;552
52.3.4.2;51.2.4.2 Method 2;553
52.3.4.3;51.2.4.3 Method 3;553
52.3.4.4;51.2.4.4 Method 4;553
52.4;51.3 Results and Discussions;554
52.4.1;51.3.1 Fuel Consumption Result;554
52.4.2;51.3.2 Off-cycle Credit Result;554
52.5;51.4 Summary and Conclusion;556
52.6;References;557
53;52 Power-Loss Estimation for Low-Voltage Automotive PMSM Inverter;558
53.1;Abstract;558
53.2;52.1 Introduction;558
53.3;52.2 Power Loss Model of MOSFET;559
53.3.1;52.2.1 Switching Characteristic of MOSFET;560
53.3.2;52.2.2 Switching Power Loss of MOSFET;561
53.3.3;52.2.3 Conduction Power Loss of MOSFET;563
53.4;52.3 Power-Loss for SVPWM Inverter;564
53.4.1;52.3.1 Control Model of SVPWM;564
53.4.2;52.3.2 Conduction Power Loss Calculation Model of MOSFET;566
53.4.3;52.3.3 Conduction Power Loss Calculation Model of Body Diode;569
53.4.4;52.3.4 Switching Power Loss Calculation Model of MOSFET;570
53.4.5;52.3.5 Inverter Power Loss Calculation Model;571
53.5;52.4 Simulation;571
53.6;52.5 Conclusion;574
53.7;References;574
54;53 A Distribution-Based Model for Electric/Electronic Architectures of Automotive;576
54.1;Abstract;576
54.2;53.1 Introduction;576
54.3;53.2 Distribution in-Vehicle Network Architecture;577
54.3.1;53.2.1 Centralized Electric/Electronic Architectures of Automotive;578
54.3.2;53.2.2 Distributed Electric/Electronic Architectures of Automotive;579
54.3.3;53.2.3 Characteristics of Electric/Electronic Architectures of Automotive;580
54.4;53.3 The Design Method of the Electric/Electronic Architectures of Automotive;581
54.4.1;53.3.1 The Design Principles of the Distributed Network Architecture;582
54.4.2;53.3.2 Vehicle Coordination Control;583
54.5;53.4 Verification and Analysis of the Prototype of Electric/Electronic Architectures of Automotive;583
54.5.1;53.4.1 Each ECU Functional Analysis;583
54.5.2;53.4.2 ECU Network Optimization;585
54.5.3;53.4.3 Design of Network Architecture;586
54.6;53.5 Conclusion;587
54.7;Acknowledgments;587
54.8;References;587
55;54 An Advanced Structural Analysis Method for Connector Terminal Based on Multi-step Forming;588
55.1;Abstract;588
55.2;54.1 Introduction;588
55.3;54.2 Stamping-Structural Alliance Analysis Method;590
55.4;54.3 Multi-step Stamping Forming Analysis;590
55.4.1;54.3.1 Hardening Constitutive Model of Material;590
55.4.2;54.3.2 FEM for Multi-step Bending Forming and Its Spring-Back;591
55.4.3;54.3.3 Multi-step Forming Analysis Results;591
55.5;54.4 Structural Analysis for Formed Terminal;594
55.5.1;54.4.1 Importing the Formed Terminal, Mapping Hardening Material, and Residual Stress;594
55.5.2;54.4.2 Structural Analysis Results;594
55.6;54.5 Discussion and Conclusion;595
55.6.1;54.5.1 Discussion;595
55.6.2;54.5.2 Conclusion;597
55.7;Acknowledgments;597
55.8;References;597
56;55 Fuel Consumption Optimization for an Automatic Transmission Passenger Vehicle;598
56.1;Abstract;598
56.2;55.1 Introduction;598
56.3;55.2 Analysis of the Original Calibration Data;599
56.4;55.3 Fuel Consumption Reduction Solution;600
56.4.1;55.3.1 Automatic Transmission Gear-Shift Curve;600
56.4.2;55.3.2 Deceleration Fuel Cut-off Optimization;601
56.4.3;55.3.3 Idle Speed Calibration Optimization;603
56.5;55.4 Effect Verification;603
56.5.1;55.4.1 Drivability and Emission Verification;603
56.5.2;55.4.2 Fuel Consumption Reduction Result;604
56.5.2.1;55.4.2.1 Actual Driving Fuel Consumption in the City Driving Condition;604
56.5.2.2;55.4.2.2 Fuel Consumption in NEDC Cycle;605
56.6;55.5 Summary;607
56.7;References;608
57;56 Research of Diagnosis of High-Pressure Common Rail System Based on Real-Time Model;609
57.1;Abstract;609
57.2;56.1 Model Development;610
57.2.1;56.1.1 Model Structure;610
57.2.2;56.1.2 Analyses and Implementation of Model Development;610
57.2.2.1;56.1.2.1 Implementation of Model Development;610
57.2.2.2;56.1.2.2 Implementation of Diagnosis Process;612
57.2.2.3;56.1.2.3 Fault Handling;612
57.3;56.2 Rapid Prototype and Test Bed Calibration and Validation;613
57.3.1;56.2.1 Data Calibration;613
57.3.2;56.2.2 Algorithm Validation Based on Engine Test Bed;613
57.4;56.3 Vehicle Validation Test;617
57.5;56.4 Conclusion;618
57.6;References;618
58;57 Road Friction Coefficient Estimation by Using Lateral Dynamics Based on In-Wheel Motor Driven Electric Vehicle;619
58.1;Abstract;619
58.2;57.1 Introduction;619
58.3;57.2 Estimation of Longitudinal Forces;620
58.4;57.3 Vehicle and Tire Models;622
58.5;57.4 Estimation Method;624
58.6;57.5 Simulation Results;625
58.7;57.6 Conclusion;626
58.8;References;626


Founded in 1963, SAE-China is a national and academic body corporate and a non-profit organization composed voluntarily by enterprises, institutions, incorporations and professionals in the fields of automotive and relative industries which focus on research, design, manufacture, education, sales, management and so on. And it is also the member of FISITA (International Federation of Automotive Engineering Societies) as well as one of the initiators in organizing IPC (International Pacific Conference on Automotive Engineering. Now it is renamed as Asia Pacific Automotive Engineering Conference/APAC). SAE-China has become an indispensable and important force for promoting healthy and continuous development of automotive industry through over 40 years' development and has been recognized by domestic and international automotive industries, different social circles, government and nationwide automotive professionals.SAE-China has tens of thousands of personal members and hundreds of group members, with more than 20 professional committees, and has established business guidance relationship with provincial societies of automotive engineers. SAE-China has become an important force for spreading new ideas, exchanging new technologies and propagandizing new conception of China auto industry and also an important bridge for promoting the exchange among international auto industries.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.