Buch, Englisch, 164 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 408 g
Buch, Englisch, 164 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 408 g
Reihe: Signal and Image Processing of Earth Observations
ISBN: 978-0-367-85848-3
Verlag: CRC Press
Specific Features of this Book:
- The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow)
- Presents approaches suited for real world images and data targeting large scale processing and GIS applications
- Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration)
- Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills.
- Includes deep learning techniques through many step by step remote sensing data processing exercises.
Zielgruppe
Academic, Postgraduate, Professional, Professional Practice & Development, and Undergraduate Core
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Geowissenschaften Geologie GIS, Geoinformatik
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Geowissenschaften Umweltwissenschaften Umwelttechnik
- Technische Wissenschaften Umwelttechnik | Umwelttechnologie Umwelttechnik
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
Weitere Infos & Material
Introduction
I Backgrounds
II Patch Based Classification
III Semantic Segmentation
IV Image Restoration