Buch, Englisch, 447 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g
Buch, Englisch, 447 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g
ISBN: 978-90-481-6527-8
Verlag: Springer Netherlands
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Physik, Chemie für Ingenieure
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Metallurgie
- Naturwissenschaften Chemie Physikalische Chemie
- Naturwissenschaften Chemie Anorganische Chemie Festkörperchemie
- Naturwissenschaften Physik Elektromagnetismus Halbleiter- und Supraleiterphysik
- Naturwissenschaften Physik Angewandte Physik
- Naturwissenschaften Physik Elektromagnetismus Magnetismus
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Metallische Werkstoffe
Weitere Infos & Material
1 Crystal and Magnetic Structure from Hole to Electron Doped Manganites.- 1 Introduction.- 2 Crystal Structures.- 3 Charge and Orbital Ordering in Manganites.- 4 General Trends From Hole- to Electron-Doped Manganites.- 5 Orbital Frustration for Mn3+-rich Manganites (0 < x < 1/2).- 6 Stability of the CE-type Charge and Orbital Ordering.- 7 Structure and Magnetism in Electron Doped Manganites.- 2 Approach to the metal-insulator transition in manganites.- 1 Introduction.- 2 Structural and Magnetic Phase Diagram of La1-xCaxMnO3, 0 ? x ? 0.22.- 3 Diffuse Scattering.- 4 Spin Dynamics.- 5 General discussion.- 3 The Electronic Structure, Fermi Surface and Pseudogap in Manganites.- 1 Introduction.- 2 Background and Review.- 3 Experimental Technique- Angle-Resolved Photoemission Spectroscopy (ARPES).- 4 Overview of Electronic Structures.- 5 Near Fermi Energy Electronic Structure Probed by High Resolution Angle Resolved Photoemission Spectroscopy (ARPES).- 6 Summary, Conclusion and Outlook.- 4 Multi-scale Phase Modulations in Colossal Magnetoresistance Manganites.- 1 Introduction.- 2 Phasediagramof La1-xCaxMnO3 revisited.- 3 Phase separation in manganites.- 4 High temperature charge-ordering fluctuation and nano-scale phase coexistence.- 5 X-ray scattering studies of high-temperature charge/orbital correlations.- 6 Conclusions.- 7 Acknowledgements.- 5 Theory of Manganites.- 1 Early Theoretical Studies of Manganites.- 2 Model for Manganites.- 3 Spin-Charge-Orbital Ordering.- 4 Phase-separation scenario.- 5 Concluding Remarks.- 6 Orbital effects in manganites.- 1 Introduction.- 2 Orbital order for x < 1/2.- 3 Quantum effects; optimal doping.- 4 Orbital order for x ? 1/2.- 5 Conclusions.- 6 Acknowledgments.- 7 Magnetic excitations of the double exchange model.- 1 Introduction.-2 Magnetic Excitations for a Simple Double Exchange Model.- 3 More Realistic Models.- 4 Concluding Remarks.- 8 Spin dynamics of bilayer manganites.- 1 Introduction.- 2 Ruddlesden-Popper phases.- 3 Crystal and magnetic structure of bilayer manganites.- 4 Ferromagnetic phase transition in La1.2Sr1.8Mn2O7.- 5 Spin waves in bilayer manganites.- 6 A theory of ferromagnetic spin waves in infinite-layer and bilayer manganites.- 7 Doping dependence of the exchange energies in bilayer manganites.- 8 Diffuse magnetic scattering from La1.2Sr1.8Mn2O7.- 9 Concluding remarks.- 9 Charge and Orbital Ordering of Manganites Observed by Resonant X-ray Scattering.- 1 Introduction.- 2 Principle of Resonant X-ray Scattering to Observe Charge and Orbital Ordering.- 3 Theory of RXS.- 4 Recent development of Resonant X-ray Scattering.- 5 Resonant Inelastic X-ray Scattering to Observe Orbital Excitations.- 6 Summary.- 7 Acknowledgements.- 10 Theory of Manganites Exhibiting Colossal Magnetoresistance.- 1 Introduction.- 2 Coexisting polaronic and band states.- 3 A new model Hamiltonian for manganites in the strong electron lattice JT coupling regime.- 4 DMFT wth polaronic and band states.- 5 Metal insulator transitions.- 6 Resistivity, CMR and material systematics.- 7 Other unusual properties.- 8 Discussion.