Castillo-Garcia / Munoz Hernandez / Gil | Indoor Navigation Strategies for Aerial Autonomous Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 300 Seiten

Castillo-Garcia / Munoz Hernandez / Gil Indoor Navigation Strategies for Aerial Autonomous Systems

E-Book, Englisch, 300 Seiten

ISBN: 978-0-12-805339-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detailed information on fusion inertial measurements for orientation stabilization and its validation in flight tests, also proposing substantial theoretical and practical validation for improving the dropped or noised signals. In addition, the book contains different strategies to control and navigate aerial systems. The comprehensive information will be of interest to both researchers and practitioners working in automatic control, mechatronics, robotics, and UAVs, helping them improve research and motivating them to build a test-bed for future projects. - Provides substantial information on nonlinear control approaches and their validation in flight tests - Details in observer-delay schemes that can be applied in real-time - Teaches how an IMU is built and how they can improve the performance of their system when applying observers or predictors - Improves prototypes with tactics for proposed nonlinear schemes

He received the best Ph.D. thesis of Automatic Control award from club EEA, (France) in 2005. His research topics cover: real-time control applications, non-linear dynamics and control, aerospace vehicles, vision and underactuated mechanical systems.
Castillo-Garcia / Munoz Hernandez / Gil Indoor Navigation Strategies for Aerial Autonomous Systems jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Indoor Navigation Strategies for Aerial Autonomous Systems;4
3;Copyright;5
4;Contents;6
5;About the Authors;10
6;Preface;12
7;Acknowledgments;14
8;Part 1 Background;16
8.1;1 State-of-the-Art;18
8.1.1;1.1 Mathematical Representation of the Vehicle Dynamics;19
8.1.2;1.2 Attitude Estimation Using Inertial Sensors;21
8.1.3;1.3 Delay Systems & Predictors;22
8.1.4;1.4 Data Fusion for UAV Localization;23
8.1.5;1.5 Control & Navigation Algorithms;26
8.1.6;1.6 Trajectory Generation & Tracking;30
8.1.7;1.7 Obstacle Avoidance;31
8.1.8;1.8 Teleoperation;35
8.1.9; References;37
8.2;2 Modeling Approaches;46
8.2.1;2.1 Force and Moment in a Rotor;46
8.2.2;2.2 Euler-Lagrange Approach;47
8.2.3;2.3 Newton-Euler Approach;52
8.2.4;2.4 Quaternion Approach;55
8.2.5;2.5 Discussion;64
8.2.6; References;65
9;Part 2 Improving Sensor Signals for Control Purposes;66
9.1;3 Inertial Sensors Data Fusion for Orientation Estimation;68
9.1.1;3.1 Attitude Representation;68
9.1.2;3.2 Sensor Characterization;70
9.1.3;3.3 Attitude Estimation Algorithms;71
9.1.4;3.4 A Computationally-Efficient Kalman Filter;79
9.1.5;3.5 Discussion;88
9.1.6; References;89
9.2;4 Delay Signals & Predictors;90
9.2.1;4.1 Observer-Predictor Algorithm for Compensation of Measurement Delays;91
9.2.2;4.2 State Predictor-Control Scheme;102
9.2.3;4.3 Discussion;120
9.2.4; References;122
9.3;5 Data Fusion for UAV Localization;124
9.3.1;5.1 Sensor Data Fusion;124
9.3.2;5.2 Prototype and Numerical Implementation;131
9.3.3;5.3 Flight Tests and Experimental Results;133
9.3.4;5.4 OptiTrack Measurements vs EKF Estimation;139
9.3.5;5.5 Rotational Optical Flow Compensation;141
9.3.6;5.6 Discussion;143
9.3.7; References;143
10;Part 3 Navigation Schemes & Control Strategies;146
10.1;6 Nonlinear Control Algorithms with Integral Action;148
10.1.1;6.1 From PD to PID Controllers;149
10.1.2;6.2 Saturated Controllers with Integral Component;151
10.1.3;6.3 Integral and Adaptive Backstepping Control - IAB;160
10.1.4;6.4 Discussion;168
10.1.5; References;169
10.2;7 Sliding Mode Control;172
10.2.1;7.1 From the Nonlinear Attitude Representation to Linear MIMO Expression;172
10.2.2;7.2 Nonlinear Optimal Controller with Integral Sliding Mode Design;175
10.2.3;7.3 Numerical Validation;181
10.2.4;7.4 Real-Time Validation;189
10.2.5;7.5 Discussion;193
10.2.6; References;193
10.3;8 Robust Simple Controllers;196
10.3.1;8.1 Nonlinear Robust Algorithms Based on Saturation Functions;197
10.3.2;8.2 Robust Control Based on an Uncertainty Estimator;211
10.3.3;8.3 Discussion;226
10.3.4; References;227
10.4;9 Trajectory Generation, Planning & Tracking;228
10.4.1;9.1 Quadrotor Mathematical Description;229
10.4.2;9.2 Time-Optimal Trajectory Generation;232
10.4.3;9.3 UAV Routing Problem for Inspection-Like Missions;235
10.4.4;9.4 Trajectory Tracking Problem;238
10.4.5;9.5 Simulation Results;239
10.4.6;9.6 Discussion;255
10.4.7; References;255
10.5;10 Obstacle Avoidance;258
10.5.1;10.1 Artificial Potential Field Method;258
10.5.2;10.2 Obstacle Avoidance Algorithm;263
10.5.3;10.3 Limit-Cycle Obstacle Avoidance;272
10.5.4;10.4 Discussion;276
10.5.5; References;276
10.6;11 Haptic Teleoperation;278
10.6.1;11.1 Experimental Setup;279
10.6.2;11.2 Collision Avoidance;284
10.6.3;11.3 Haptic Teleoperation;285
10.6.4;11.4 Real-Time Experiments;286
10.6.5;11.5 Discussion;289
10.6.6; References;290
11;Index;292
12;Back Cover;302


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.