Carreira / Drabowicz / Marek | Science of Synthesis Knowledge Updates 2011 Vol. 3 | E-Book | sack.de
E-Book

E-Book, Englisch, 572 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Carreira / Drabowicz / Marek Science of Synthesis Knowledge Updates 2011 Vol. 3

E-Book, Englisch, 572 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-178751-4
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Content of this volume: Organometallic Complexes of Titanium, Silenes, Carboxylic Acids, Carboxylic Acid Esters, Imines, Iminium Salts, Alkanesulfinic Acids and Acyclic Derivatives, Alkanethiols, Alkanethiolates of Group 1, 2, and 13-15 Metals, Cyclic Alkanetelluronic Acid Derivatives, Metal-Mediated Cyclizations of Amines.
Carreira / Drabowicz / Marek Science of Synthesis Knowledge Updates 2011 Vol. 3 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2011/3;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;18
1.6;Table of Contents;20
1.7;Volume 2: Compounds of Groups 7-3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···);34
1.7.1;2.10 Product Class 10: Organometallic Complexes of Titanium;34
1.7.1.1;2.10.18 Organometallic Complexes of Titanium;34
1.7.1.1.1;2.10.18.1 Titanium-Mediated Alkenation Reactions;34
1.7.1.1.1.1;2.10.18.1.1 Method 1: Using Thioacetals as Carbene Complex Precursors;34
1.7.1.1.1.2;2.10.18.1.2 Method 2: Using Monohalides as Carbene Complex Precursors;45
1.7.1.1.1.3;2.10.18.1.3 Method 3: Using gem-Dichlorides as Carbene Complex Precursors;46
1.7.1.1.1.4;2.10.18.1.4 Method 4: Using 1,1-Dichloroalk-1-enes as Carbene Complex Precursors;47
1.7.1.1.1.5;2.10.18.1.5 Method 5: Using Alkenyl and Alkynyl Sulfones;48
1.7.1.1.2;2.10.18.2 Titanium-Mediated Alkene Metathesis;49
1.7.1.1.2.1;2.10.18.2.1 Method 1: Metathesis and Related Reactions via Titanacyclobutanes;49
1.7.1.1.2.1.1;2.10.18.2.1.1 Variation 1: Reaction of Titanocene Alkylidenes with Alkenes;49
1.7.1.1.2.1.2;2.10.18.2.1.2 Variation 2: Intramolecular Reaction of Titanocene Alkylidenes Bearing an Alkene Moiety;52
1.7.1.1.2.1.3;2.10.18.2.1.3 Variation 3: Reaction of Unsaturated Titanocene–Carbene Complexes with Alkenes;56
1.7.1.1.2.2;2.10.18.2.2 Method 2: Metathesis and Related Reactions via Titanacyclobutenes;60
1.7.1.1.2.2.1;2.10.18.2.2.1 Variation 1: Reaction of Alkenylcarbene Complexes of Titanium with Acetylene;60
1.7.1.1.2.2.2;2.10.18.2.2.2 Variation 2: Reaction of Titanocene Alkylidenes with Alkynes;60
1.7.1.1.2.2.3;2.10.18.2.2.3 Variation 3: Reaction of Titanocene Alkenylidenes with Alkynes;63
1.7.1.1.2.2.4;2.10.18.2.2.4 Variation 4: Reaction of Titanocene Alkylidenes with Alkynyl Sulfones;64
1.7.1.1.2.2.5;2.10.18.2.2.5 Variation 5: Valence Tautomerization of Alkenylcarbene Complexes;65
1.7.1.1.2.2.6;2.10.18.2.2.6 Variation 6: Titanium-Promoted Alkylation of Propargyl Carbonates;66
1.8;Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds;70
1.8.1;4.4 Product Class 4: Silicon Compounds;70
1.8.1.1;4.4.2.5 Silenes (Update 1);70
1.8.1.1.1;4.4.2.5.1 Method 1: Synthesis of Silenes by Photolysis or Thermolysis of Acylpolysilanes and Derivatives;72
1.8.1.1.1.1;4.4.2.5.1.1 Variation 1: Thermolysis of Carbamoylpolysilanes;72
1.8.1.1.1.2;4.4.2.5.1.2 Variation 2: Thermal Rearrangement of Mercury Bis(acylsilanes);73
1.8.1.1.2;4.4.2.5.2 Method 2: Salt Elimination Methods;74
1.8.1.1.2.1;4.4.2.5.2.1 Variation 1: Reaction of Lithium Disilenides with Acyl or Vinyl Halides;75
1.8.1.1.2.2;4.4.2.5.2.2 Variation 2: Reaction of Dilithiosiloles with Ketones;76
1.8.1.1.3;4.4.2.5.3 Method 3: Sila-Peterson Alkenation Reactions;76
1.8.1.1.4;4.4.2.5.4 Method 4: Silylene–Silene and Carbene–Silene Isomerizations;78
1.8.1.2;4.4.2.6 Silenes (Update 2);80
1.8.1.2.1;4.4.2.6.1 Silenolates;80
1.8.1.2.1.1;4.4.2.6.1.1 Method 1: Synthesis of Silen-2-olates by Trimethylsilyl–Metal Exchange;84
1.8.1.2.1.1.1;4.4.2.6.1.1.1 Variation 1: With Germyllithium Reagents;84
1.8.1.2.1.1.2;4.4.2.6.1.1.2 Variation 2: With Silyllithium Reagents;84
1.8.1.2.1.1.3;4.4.2.6.1.1.3 Variation 3: With Potassium tert-Butoxide;85
1.8.1.2.2;4.4.2.6.2 Method 2: Synthesis of Silen-2-olates by Reaction of Bis(lithiosilyl)mercury Compounds with Acyl Chlorides;86
1.9;Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides; Carboxylic Acids and Acid Salts; Esters, and Lactones; Peroxy Acids and R(CO)OX Compounds; R(CO)X, X == S, Se, Te;90
1.9.1;20.2 Product Class 2: Carboxylic Acids;90
1.9.1.1;20.2.1.2.10 Synthesis from Carboxylic Acid Derivatives;90
1.9.1.1.1;20.2.1.2.10.1 Method 1: Hydrolysis of Esters;90
1.9.1.1.1.1;20.2.1.2.10.1.1 Variation 1: Nucleophile-Promoted Cleavage;90
1.9.1.1.1.2;20.2.1.2.10.1.2 Variation 2: Hydrogenolytic Cleavage of Benzyl Esters;91
1.9.1.1.1.3;20.2.1.2.10.1.3 Variation 3: Transition-Metal-Mediated Cleavage of Allyl Esters;92
1.9.1.1.1.4;20.2.1.2.10.1.4 Variation 4: Cleavage of 2-Haloethyl Esters;94
1.9.1.1.1.5;20.2.1.2.10.1.5 Variation 5: Light-Induced Cleavage;96
1.9.1.1.1.6;20.2.1.2.10.1.6 Variation 6: Fluoride-Mediated Cleavage of Silyl Esters;97
1.9.1.1.1.7;20.2.1.2.10.1.7 Variation 7: Enzymatic Hydrolysis;98
1.9.1.1.2;20.2.1.2.10.2 Method 2: Hydrolysis of Hydrazides;99
1.9.1.1.2.1;20.2.1.2.10.2.1 Variation 1: Base-Mediated Hydrolysis;99
1.9.1.1.2.2;20.2.1.2.10.2.2 Variation 2: Acid-Catalyzed Hydrolysis;100
1.9.1.1.2.3;20.2.1.2.10.2.3 Variation 3: Oxidative Hydrolysis;101
1.9.1.1.2.4;20.2.1.2.10.2.4 Variation 4: Enzymatic Hydrolysis;102
1.9.1.1.3;20.2.1.2.10.3 Method 3: Hydrolysis of 1,1,1-Trihalides;103
1.9.2;20.5 Product Class 5: Carboxylic Acid Esters;110
1.9.2.1;20.5.1.2.8 Synthesis from Carboxylic Acids and Derivatives;110
1.9.2.1.1;20.5.1.2.8.1 Synthesis from Carboxylic Acids;110
1.9.2.1.1.1;20.5.1.2.8.1.1 Method 1: Synthesis via Active Esters;110
1.9.2.1.1.1.1;20.5.1.2.8.1.1.1 Variation 1: Via Mixed Sulfonic Anhydrides;111
1.9.2.1.1.1.2;20.5.1.2.8.1.1.2 Variation 2: Via (Acyloxy)phosphorus Compounds;113
1.9.2.1.1.1.3;20.5.1.2.8.1.1.3 Variation 3: Via Esters of Electron-Deficient Alcohols or of N-Acylhydroxylamines;114
1.9.2.1.1.1.4;20.5.1.2.8.1.1.4 Variation 4: Via Ketene Acyl Acetals;115
1.9.2.1.1.2;20.5.1.2.8.1.2 Method 2: Oxidative Coupling;116
1.9.2.1.1.3;20.5.1.2.8.1.3 Method 3: Electrophilic Esterification;116
1.9.2.1.1.3.1;20.5.1.2.8.1.3.1 Variation 1: Using Alkyl Halides;116
1.9.2.1.1.3.2;20.5.1.2.8.1.3.2 Variation 2: Using Diazoalkanes;118
1.9.2.1.1.4;20.5.1.2.8.1.4 Method 4: Enzymatic Esterification;119
1.9.2.1.2;20.5.1.2.8.2 Synthesis from Carboxylic Acid Derivatives;120
1.9.2.1.2.1;20.5.1.2.8.2.1 Method 1: Synthesis from Thioesters;120
1.9.2.1.2.2;20.5.1.2.8.2.2 Method 2: Synthesis from Carboxylic Acid Hydrazides;121
1.10;Volume 27: Heteroatom Analogues of Aldehydes and Ketones;126
1.10.1;27.7 Product Class 7: Imines;126
1.10.1.1;27.7.6 Imines;126
1.10.1.1.1;27.7.6.1 N-Unsubstituted Imines;126
1.10.1.1.1.1;27.7.6.1.1 Synthesis of N-Unsubstituted Imines;126
1.10.1.1.1.1.1;27.7.6.1.1.1 Method 1: Reaction of Aldehydes and Ketones with Ammonia;126
1.10.1.1.1.1.2;27.7.6.1.1.2 Method 2: Synthesis from Oximes;127
1.10.1.1.1.1.3;27.7.6.1.1.3 Method 3: Oxidation of Primary Amines;128
1.10.1.1.1.1.4;27.7.6.1.1.4 Method 4: Synthesis from Nitriles;128
1.10.1.1.1.1.5;27.7.6.1.1.5 Method 5: Miscellaneous Procedures;130
1.10.1.1.2;27.7.6.2 N-Silylimines;130
1.10.1.1.2.1;27.7.6.2.1 Synthesis of N-Silylimines;130
1.10.1.1.2.1.1;27.7.6.2.1.1 Method 1: Reaction of Carbonyl Compounds with Lithium Hexamethyldisilazanide;130
1.10.1.1.2.1.2;27.7.6.2.1.2 Method 2: Reaction of Nitriles with Organometallic Reagents;131
1.10.1.1.3;27.7.6.3 N-Alkyl- and N-Arylimines;132
1.10.1.1.3.1;27.7.6.3.1 Synthesis of N-Alkyl- and N-Arylimines;133
1.10.1.1.3.1.1;27.7.6.3.1.1 Method 1: Reaction of Aldehydes or Ketones with Primary Amines;133
1.10.1.1.3.1.1.1;27.7.6.3.1.1.1 Variation 1: With Azeotropic Removal of Water;133
1.10.1.1.3.1.1.2;27.7.6.3.1.1.2 Variation 2: With Titanium(IV) Chloride;133
1.10.1.1.3.1.1.3;27.7.6.3.1.1.3 Variation 3: With Solid-Phase Lewis Acids;135
1.10.1.1.3.1.1.4;27.7.6.3.1.1.4 Variation 4: With Other Lewis Acids;135
1.10.1.1.3.1.1.5;27.7.6.3.1.1.5 Variation 5: Miscellaneous Procedures;137
1.10.1.1.3.1.2;27.7.6.3.1.2 Method 2: Reaction of Imidates with Organometallic Reagents;137
1.10.1.1.3.1.3;27.7.6.3.1.3 Method 3: Synthesis from Amides;138
1.10.1.1.3.1.3.1;27.7.6.3.1.3.1 Variation 1: By Reduction;138
1.10.1.1.3.1.3.2;27.7.6.3.1.3.2 Variation 2: By Addition of Organometallic Reagents;139
1.10.1.1.3.1.3.3;27.7.6.3.1.3.3 Variation 3: By Hydrolysis of N-Vinyl Lactams;140
1.10.1.1.3.1.3.4;27.7.6.3.1.3.4 Variation 4: Via Nitrilium Ions;140
1.10.1.1.3.1.3.5;27.7.6.3.1.3.5 Variation 5: Miscellaneous Procedures;142
1.10.1.1.3.1.4;27.7.6.3.1.4 Method 4: Synthesis from Oximes;142
1.10.1.1.3.1.5;27.7.6.3.1.5 Method 5: Synthesis from Imidoyl Halides;144
1.10.1.1.3.1.5.1;27.7.6.3.1.5.1 Variation 1: By Reduction;144
1.10.1.1.3.1.5.2;27.7.6.3.1.5.2 Variation 2: By Substitution;145
1.10.1.1.3.1.5.3;27.7.6.3.1.5.3 Variation 3: Via Palladium-Catalyzed Cross Coupling;145
1.10.1.1.3.1.5.4;27.7.6.3.1.5.4 Variation 4: Via 1,3-Dipolar Cycloaddition;147
1.10.1.1.3.1.6;27.7.6.3.1.6 Method 6: Oxidation of Amines;147
1.10.1.1.3.1.6.1;27.7.6.3.1.6.1 Variation 1: Oxidative Amination of Alkenes;147
1.10.1.1.3.1.6.2;27.7.6.3.1.6.2 Variation 2: Oxidation of Secondary Amines;147
1.10.1.1.3.1.7;27.7.6.3.1.7 Method 7: Dehydrohalogenation of N-Haloamines;149
1.10.1.1.3.1.8;27.7.6.3.1.8 Method 8: Reaction of Aldehydes and Ketones with Azides (Aza-Wittig Reaction);151
1.10.1.1.3.1.9;27.7.6.3.1.9 Method 9: Addition of Primary Amines to Alkynes;153
1.10.1.1.3.1.10;27.7.6.3.1.10 Method 10: Addition of Organometallic Compounds to Nitriles;156
1.10.1.1.3.1.11;27.7.6.3.1.11 Method 11: Addition/Rearrangement of Alkenic Azides;157
1.10.1.1.3.1.12;27.7.6.3.1.12 Method 12: C-Alkylation of 1-Azaallyl Anions;158
1.10.1.1.3.1.13;27.7.6.3.1.13 Method 13: N-Alkylation of N-Unsubstituted Imines;159
1.10.1.1.3.1.14;27.7.6.3.1.14 Method 14: a-Halogenation of Imines;160
1.10.1.1.3.1.15;27.7.6.3.1.15 Method 15: Synthesis from Enamines;162
1.10.1.1.3.1.16;27.7.6.3.1.16 Method 16: Synthesis from Isocyanides;163
1.10.1.1.3.1.17;27.7.6.3.1.17 Method 17: Synthesis from Alkenyl Halides;165
1.10.1.1.3.1.18;27.7.6.3.1.18 Method 18: Miscellaneous Procedures;166
1.10.1.1.4;27.7.6.4 2H-Azirines;169
1.10.1.1.4.1;27.7.6.4.1 Synthesis of 2H-Azirines;169
1.10.1.1.4.1.1;27.7.6.4.1.1 Method 1: Synthesis from Oximes and Hydrazonium Salts;169
1.10.1.1.4.1.2;27.7.6.4.1.2 Method 2: Oxidation of Aziridines;170
1.10.1.1.4.1.3;27.7.6.4.1.3 Method 3: Elimination from N-Substituted Aziridines;170
1.10.1.1.4.1.4;27.7.6.4.1.4 Method 4: Synthesis from Vinyl Azides;171
1.10.1.1.4.1.5;27.7.6.4.1.5 Method 5: Synthesis from Other Azirines;171
1.10.1.1.4.1.6;27.7.6.4.1.6 Method 6: Miscellaneous Procedures;171
1.10.1.1.5;27.7.6.5 2,3-Dihydroazetes;173
1.10.1.1.5.1;27.7.6.5.1 Synthesis of 2,3-Dihydroazetes;173
1.10.1.1.5.1.1;27.7.6.5.1.1 Method 1: Miscellaneous Procedures;173
1.10.2;27.8 Product Class 8: Iminium Salts;184
1.10.2.1;27.8.2 Iminium Salts;184
1.10.2.1.1;27.8.2.1 Synthesis of Iminium Salts;184
1.10.2.1.1.1;27.8.2.1.1 Method 1: Reaction of Secondary Amines with Aldehydes or Ketones;184
1.10.2.1.1.2;27.8.2.1.2 Method 2: Reaction of Tertiary Amines;187
1.10.2.1.1.3;27.8.2.1.3 Method 3: Cleavage of Aminals;188
1.10.2.1.1.4;27.8.2.1.4 Method 4: Cleavage of Hemiaminals;189
1.10.2.1.1.5;27.8.2.1.5 Method 5: Synthesis from Aldimines and Ketimines;191
1.10.2.1.1.5.1;27.8.2.1.5.1 Variation 1: By Alkylation;191
1.10.2.1.1.5.2;27.8.2.1.5.2 Variation 2: By Protonation;193
1.10.2.1.1.6;27.8.2.1.6 Method 6: Synthesis from Enamines;194
1.10.2.1.1.6.1;27.8.2.1.6.1 Variation 1: By Alkylation;194
1.10.2.1.1.6.2;27.8.2.1.6.2 Variation 2: By Protonation;195
1.10.2.1.1.6.3;27.8.2.1.6.3 Variation 3: By Halogenation;196
1.10.2.1.1.7;27.8.2.1.7 Method 7: Synthesis from Enaminones;197
1.10.2.1.1.8;27.8.2.1.8 Method 8: Cyclization of Alkenimines;199
1.10.2.1.1.8.1;27.8.2.1.8.1 Variation 1: Electrophile-Induced Cyclization of .,d-Unsaturated Imines;199
1.10.2.1.1.8.2;27.8.2.1.8.2 Variation 2: Treatment of .,d-Unsaturated Imines with Hydrochloric Acid;201
1.10.2.1.1.9;27.8.2.1.9 Method 9: Vilsmeier Formylation;201
1.10.2.1.1.10;27.8.2.1.10 Method 10: Synthesis from Other Iminium Salts;203
1.10.2.1.1.10.1;27.8.2.1.10.1 Variation 1: By Cycloaddition;203
1.10.2.1.1.10.2;27.8.2.1.10.2 Variation 2: By Anion Exchange;204
1.10.2.1.1.11;27.8.2.1.11 Method 11: Oxidation of Amino Ketene Acetals;205
1.10.2.1.1.12;27.8.2.1.12 Method 12: Organoboron Compounds as Iminium Ion Generators;205
1.10.2.1.1.13;27.8.2.1.13 Method 13: Miscellaneous Reactions;206
1.11;Volume 39: Sulfur, Selenium, and Tellurium;212
1.11.1;39.3 Product Class 3: Alkanesulfinic Acids and Acyclic Derivatives;212
1.11.1.1;39.3.9 Alkanesulfinic Acids and Acyclic Derivatives;212
1.11.1.1.1;39.3.9.1 Alkanesulfinyl Halides;212
1.11.1.1.1.1;39.3.9.1.1 Applications of Alkanesulfinyl Halides in Organic Synthesis;212
1.11.1.1.1.1.1;39.3.9.1.1.1 Method 1: Synthesis of 1-(tert-Butylsulfonyl)aziridines;212
1.11.1.1.1.1.2;39.3.9.1.1.2 Method 2: Synthesis of Alkyl Sulfoxides;212
1.11.1.1.1.1.3;39.3.9.1.1.3 Method 3: Synthesis of Dipeptides;213
1.11.1.1.1.1.4;39.3.9.1.1.4 Method 4: Synthesis of (Alkylsulfonyl)allenes;214
1.11.1.1.2;39.3.9.2 Alkanesulfinic Acid Esters;215
1.11.1.1.2.1;39.3.9.2.1 Synthesis of Alkanesulfinic Acid Esters;215
1.11.1.1.2.1.1;39.3.9.2.1.1 Method 1: Reaction of Alk-2-ene-1-sulfinic Acid–Boron Trichloride Complexes with Ethers;216
1.11.1.1.2.1.2;39.3.9.2.1.2 Method 2: Reaction of Alkanesulfinyl Chlorides with Alcohols: Asymmetric Synthesis of Alkanesulfinic Acid Esters;217
1.11.1.1.3;39.3.9.3 Alkanethiosulfinic Acid Esters;218
1.11.1.1.3.1;39.3.9.3.1 Synthesis of Alkanethiosulfinic Acid Esters;218
1.11.1.1.3.1.1;39.3.9.3.1.1 Method 1: Synthesis from Disulfides;218
1.11.1.1.3.1.1.1;39.3.9.3.1.1.1 Variation 1: By Oxidation with 3-Chloroperoxybenzoic Acid;218
1.11.1.1.3.1.1.2;39.3.9.3.1.1.2 Variation 2: By Asymmetric Oxidation;218
1.11.1.1.4;39.3.9.4 Alkanesulfinamides;220
1.11.1.1.4.1;39.3.9.4.1 Synthesis of Alkanesulfinamides;220
1.11.1.1.4.1.1;39.3.9.4.1.1 Method 1: Reduction of N-Alkylidenealkanesulfinamides;220
1.11.1.1.4.1.1.1;39.3.9.4.1.1.1 Variation 1: Using Catecholborane or Lithium Triethylborohydride;220
1.11.1.1.4.1.1.2;39.3.9.4.1.1.2 Variation 2: Using Sodium Borohydride or L-Selectride;221
1.11.1.1.4.1.1.3;39.3.9.4.1.1.3 Variation 3: Using Diisobutylaluminum Hydride;224
1.11.1.1.4.1.1.4;39.3.9.4.1.1.4 Variation 4: Stereoselective Reduction–Cyclization;225
1.11.1.1.4.1.1.5;39.3.9.4.1.1.5 Variation 5: Using Diethylzinc and Nickel(II) Acetylacetonate;226
1.11.1.1.4.1.2;39.3.9.4.1.2 Method 2: Nucleophilic Addition to N-Alkylidenealkanesulfinamides;227
1.11.1.1.4.1.2.1;39.3.9.4.1.2.1 Variation 1: Addition of Grignard Reagents;227
1.11.1.1.4.1.2.2;39.3.9.4.1.2.2 Variation 2: Addition of Organolithium Reagents;228
1.11.1.1.4.1.2.3;39.3.9.4.1.2.3 Variation 3: Addition of Titanium Enolates;229
1.11.1.1.4.1.2.4;39.3.9.4.1.2.4 Variation 4: Addition of Zinc Enolates;231
1.11.1.1.4.1.2.5;39.3.9.4.1.2.5 Variation 5: Addition of Zinc/Copper Enolates;233
1.11.1.1.4.1.2.6;39.3.9.4.1.2.6 Variation 6: Addition of (Trifluoromethyl)trimethylsilane;234
1.11.1.1.4.1.2.7;39.3.9.4.1.2.7 Variation 7: Addition of Silyl Nucleophiles;235
1.11.1.1.4.1.2.8;39.3.9.4.1.2.8 Variation 8: Addition of Triorganozincates;236
1.11.1.1.4.1.2.9;39.3.9.4.1.2.9 Variation 9: Addition of a-Dithiolanecarboxylates;237
1.11.1.1.4.1.2.10;39.3.9.4.1.2.10 Variation 10: Addition of Vinylaluminum Reagents;238
1.11.1.1.4.1.2.11;39.3.9.4.1.2.11 Variation 11: Allylation Using Allyl Bromide and Zinc;239
1.11.1.1.4.1.2.12;39.3.9.4.1.2.12 Variation 12: Allylation Using Allyl Bromide and Indium;241
1.11.1.1.4.1.2.13;39.3.9.4.1.2.13 Variation 13: Allylation Using Allene;243
1.11.1.1.4.1.2.14;39.3.9.4.1.2.14 Variation 14: Allylation Using Allylzinc Reagents;244
1.11.1.1.4.1.2.15;39.3.9.4.1.2.15 Variation 15: Addition of Lithium Acetylides;246
1.11.1.1.4.1.2.16;39.3.9.4.1.2.16 Variation 16: Addition of Lithium Acetylides in the Presence of Trimethylaluminum;247
1.11.1.1.4.1.2.17;39.3.9.4.1.2.17 Variation 17: Addition of Lithium Acetylides in the Presence of Titanium(IV) Isopropoxide;248
1.11.1.1.4.1.2.18;39.3.9.4.1.2.18 Variation 18: Addition of Alkynylmagnesium Chlorides;249
1.11.1.1.4.1.2.19;39.3.9.4.1.2.19 Variation 19: Addition of Arylboronic Acids;250
1.11.1.1.4.1.2.20;39.3.9.4.1.2.20 Variation 20: Addition of Alkenyl(trifluoro)borates;252
1.11.1.1.4.1.2.21;39.3.9.4.1.2.21 Variation 21: Addition of Silyllithium Reagents;253
1.11.1.1.4.1.2.22;39.3.9.4.1.2.22 Variation 22: Addition of Dialkylphosphine Oxides;254
1.11.1.1.4.1.2.23;39.3.9.4.1.2.23 Variation 23: Addition of (Tributylstannyl)metals;255
1.11.1.1.4.1.3;39.3.9.4.1.3 Method 3: Samarium-Promoted Coupling;257
1.11.1.1.4.1.3.1;39.3.9.4.1.3.1 Variation 1: Reductive Homocoupling with Samarium(II) Iodide;257
1.11.1.1.4.1.3.2;39.3.9.4.1.3.2 Variation 2: Coupling with Nitrones;257
1.11.1.1.4.1.3.3;39.3.9.4.1.3.3 Variation 3: Coupling with Aldehydes;258
1.11.1.1.5;39.3.9.5 N-Alkylidenealkanesulfinamides;259
1.11.1.1.5.1;39.3.9.5.1 Synthesis of N-Alkylidenealkanesulfinamides;260
1.11.1.1.5.1.1;39.3.9.5.1.1 Method 1: Condensation of Alkanesulfinamides with Aldehydes and Ketones;260
1.11.1.1.5.1.1.1;39.3.9.5.1.1.1 Variation 1: Using Magnesium Sulfate;260
1.11.1.1.5.1.1.2;39.3.9.5.1.1.2 Variation 2: Using Copper(II) Sulfate;260
1.11.1.1.5.1.1.3;39.3.9.5.1.1.3 Variation 3: Using Titanium(IV) Ethoxide;261
1.11.1.1.5.1.1.4;39.3.9.5.1.1.4 Variation 4: Using Cesium Carbonate;262
1.11.1.1.5.1.1.5;39.3.9.5.1.1.5 Variation 5: Using Potassium Hydrogen Sulfate;263
1.11.1.1.5.1.1.6;39.3.9.5.1.1.6 Variation 6: Using Strong Bases;264
1.11.1.1.5.1.1.7;39.3.9.5.1.1.7 Variation 7: Under Barbier-Type Conditions;265
1.11.1.1.5.1.1.8;39.3.9.5.1.1.8 Variation 8: Using Cesium Fluoride;266
1.11.1.1.5.2;39.3.9.5.2 Applications of N-Alkylidenealkanesulfinamides in Organic Synthesis;267
1.11.1.1.5.2.1;39.3.9.5.2.1 Method 1: Synthesis of Amines;267
1.11.1.1.5.2.2;39.3.9.5.2.2 Method 2: Synthesis of Nitriles;267
1.11.2;39.5 Product Class 5: Alkanethiols;272
1.11.2.1;39.5.2 Alkanethiols;272
1.11.2.1.1;39.5.2.1 Applications of Alkanethiols in Organic Synthesis;272
1.11.2.1.1.1;39.5.2.1.1 Method 1: Synthesis of Sulfonyl Chlorides from Alkanethiols;275
1.11.2.1.1.2;39.5.2.1.2 Method 2: Synthesis of Alkanesulfonamides from Alkanethiols;276
1.11.2.1.1.3;39.5.2.1.3 Method 3: Synthesis of Thiosulfinates from Alkanethiols;276
1.11.2.1.1.4;39.5.2.1.4 Method 4: Synthesis of Sulfides;277
1.11.2.1.1.4.1;39.5.2.1.4.1 Variation 1: Reaction of Alkanethiols with Alkyl Halides;277
1.11.2.1.1.4.2;39.5.2.1.4.2 Variation 2: Preparation of Dialkyl Sulfides by Substitution of Alcohols and Carbamates;277
1.11.2.1.1.4.3;39.5.2.1.4.3 Variation 3: Ring Opening of Cyclic Ethers and Aziridines;279
1.11.2.1.1.4.4;39.5.2.1.4.4 Variation 4: Addition of Alkanethiols to Simple Alkenes;280
1.11.2.1.1.4.5;39.5.2.1.4.5 Variation 5: Miscellaneous Reactions for Sulfide Formation;281
1.11.2.1.1.5;39.5.2.1.5 Method 5: Synthesis of ß-Sulfido Carbonyl and Related Compounds;281
1.11.2.1.1.6;39.5.2.1.6 Method 6: Synthesis of Alkyl Aryl Sulfides;284
1.11.2.1.1.7;39.5.2.1.7 Method 7: Synthesis of Alkyl Vinyl Sulfides;287
1.11.2.1.1.7.1;39.5.2.1.7.1 Variation 1: Coupling of Alkanethiols with Vinyl Halides;287
1.11.2.1.1.7.2;39.5.2.1.7.2 Variation 2: Addition of Alkanethiols to Alkynes;290
1.11.2.1.1.8;39.5.2.1.8 Method 8: Synthesis of Acyclic Dialkyl Disulfides;291
1.11.2.1.1.8.1;39.5.2.1.8.1 Variation 1: Symmetrical Dialkyl Disulfides;291
1.11.2.1.1.8.2;39.5.2.1.8.2 Variation 2: Unsymmetrical Dialkyl Disulfides;293
1.11.2.1.1.9;39.5.2.1.9 Method 9: Synthesis of Acyclic Dialkyl Trisulfides;296
1.11.2.1.1.9.1;39.5.2.1.9.1 Variation 1: Symmetrical Dialkyl Trisulfides;296
1.11.2.1.1.9.2;39.5.2.1.9.2 Variation 2: Unsymmetrical Dialkyl Trisulfides;297
1.11.2.1.1.10;39.5.2.1.10 Method 10: Synthesis of Dithioacetals and Dithioketals;299
1.11.2.1.1.11;39.5.2.1.11 Method 11: Synthesis of O,S-Acetals;302
1.11.2.1.1.12;39.5.2.1.12 Method 12: Synthesis of Thioesters;305
1.11.2.1.1.13;39.5.2.1.13 Method 13: Synthesis of Thiocarbamates;308
1.11.2.1.1.14;39.5.2.1.14 Method 14: Miscellaneous Reactions Involving Application of Alkanethiols;310
1.11.3;39.6 Product Class 6: Acyclic Alkanethiolates;314
1.11.3.1;39.6.1.2 Alkanethiolates of Group 1, 2, and 13–15 Metals;314
1.11.3.1.1;39.6.1.2.1 Applications of Alkanethiolates of Group 13–15 Metals in Organic Synthesis;314
1.11.3.1.1.1;39.6.1.2.1.1 Applications of Arsenic Alkanethiolates;314
1.11.3.1.1.1.1;39.6.1.2.1.1.1 Method 1: Preparation of Sulfonium Salts;314
1.11.3.1.1.1.2;39.6.1.2.1.1.2 Method 2: Preparation of Unsymmetrical Dialkyl Disulfides;315
1.11.3.1.1.1.3;39.6.1.2.1.1.3 Method 3: Preparation of (Alkylsulfanyl)stannanes;315
1.11.3.1.1.1.4;39.6.1.2.1.1.4 Method 4: Preparation of Phosphonotrithioate Derivatives.;315
1.11.3.1.1.1.5;39.6.1.2.1.1.5 Method 5: Preparation of Trialkylarsines;316
1.11.3.1.1.2;39.6.1.2.1.2 Applications of Silicon Alkanethiolates;316
1.11.3.1.1.2.1;39.6.1.2.1.2.1 Method 1: Preparation of O-Silyl O,S-Acetals, S,S-Acetals, and S,S-Ketals;316
1.11.3.1.1.2.2;39.6.1.2.1.2.2 Method 2: Preparation of S-Alkyl Thiocarboxylates;317
1.11.3.1.1.2.3;39.6.1.2.1.2.3 Method 3: Preparation of Dialkyl Sulfides;318
1.11.3.1.1.2.4;39.6.1.2.1.2.4 Method 4: Preparation of Methyl 1-Thioglycosides;322
1.11.3.1.1.2.5;39.6.1.2.1.2.5 Method 5: Preparation of Disulfides;322
1.11.3.1.1.2.6;39.6.1.2.1.2.6 Method 6: Miscellaneous Reactions of Silicon Alkanethiolates;323
1.11.3.1.1.3;39.6.1.2.1.3 Applications of Germanium Alkanethiolates;325
1.11.3.1.1.3.1;39.6.1.2.1.3.1 Method 1: Preparation of [(Alkylsulfanyl)alkyl]germanes;325
1.11.3.1.1.3.2;39.6.1.2.1.3.2 Method 2: Preparation of Phosphonodithioate Derivatives;325
1.11.3.1.1.4;39.6.1.2.1.4 Applications of Tin Alkanethiolates;326
1.11.3.1.1.4.1;39.6.1.2.1.4.1 Method 1: Preparation of Alkyl 1-Thioglycosides;326
1.11.3.1.1.4.2;39.6.1.2.1.4.2 Method 2: Preparation of Alkyl Aryl Sulfides and Alkyl Vinyl Sulfides;327
1.11.3.1.1.4.3;39.6.1.2.1.4.3 Method 3: Preparation of Alkyl Disulfides;328
1.11.3.1.1.4.4;39.6.1.2.1.4.4 Method 4: Miscellaneous Reactions of Tin Alkanethiolates;330
1.11.3.1.1.5;39.6.1.2.1.5 Applications of Lead Alkanethiolates;333
1.11.3.1.1.5.1;39.6.1.2.1.5.1 Method 1: Preparation of (Alkylsulfanyl)silanes;333
1.11.3.1.1.5.2;39.6.1.2.1.5.2 Method 2: Preparation of Trithioortho Esters;333
1.11.3.1.1.6;39.6.1.2.1.6 Applications of Boron Alkanethiolates;334
1.11.3.1.1.6.1;39.6.1.2.1.6.1 Method 1: Preparation of S-Alkyl Thiocarboxylates;334
1.11.3.1.1.6.2;39.6.1.2.1.6.2 Method 2: Preparation of Alkyl Aryl Sulfides and Alkyl Vinyl Sulfides;335
1.11.3.1.1.6.3;39.6.1.2.1.6.3 Method 3: Miscellaneous Reactions of Boron Alkanethiolates;337
1.11.3.1.1.7;39.6.1.2.1.7 Applications of Aluminum Alkanethiolates;339
1.11.3.1.1.7.1;39.6.1.2.1.7.1 Method 1: Preparation of S-Alkyl Thiocarboxylates and Related Compounds;339
1.11.3.1.1.7.2;39.6.1.2.1.7.2 Method 2: Preparation of ß-Alkylsulfanyl-Substituted Ketones and Related Compounds;341
1.11.3.1.1.7.3;39.6.1.2.1.7.3 Method 3: Preparation of Alkyl Alkanimidothioates;345
1.11.3.1.1.7.4;39.6.1.2.1.7.4 Method 4: Miscellaneous Reactions of Aluminum Alkanethiolates;346
1.11.3.1.1.8;39.6.1.2.1.8 Applications of Indium Alkanethiolates;348
1.11.3.1.1.8.1;39.6.1.2.1.8.1 Method 1: Preparation of Alkyl Aryl Sulfides;348
1.11.3.1.1.9;39.6.1.2.1.9 Applications of Thallium Alkanethiolates;349
1.11.3.1.1.9.1;39.6.1.2.1.9.1 Method 1: Preparation of S-Alkyl Thiocarboxylates;349
1.11.3.1.2;39.6.1.2.2 Applications of Alkanethiolates of Group 1 and 2 Metals in Organic Synthesis;350
1.11.3.1.2.1;39.6.1.2.2.1 Applications of Lithium Alkanethiolates;350
1.11.3.1.2.1.1;39.6.1.2.2.1.1 Method 1: Preparation of Sulfides;350
1.11.3.1.2.1.2;39.6.1.2.2.1.2 Method 2: Preparation of S-Alkyl Thiocarboxylates and Related Compounds;354
1.11.3.1.2.1.3;39.6.1.2.2.1.3 Method 3: Miscellaneous Reactions of Lithium Alkanethiolates;356
1.11.3.1.2.2;39.6.1.2.2.2 Applications of Sodium Alkanethiolates;358
1.11.3.1.2.2.1;39.6.1.2.2.2.1 Method 1: Preparation of Alkyl Sulfides;358
1.11.3.1.2.2.2;39.6.1.2.2.2.2 Method 2: Preparation of a-Alkylsulfanyl-Substituted Carbonyl Compounds;361
1.11.3.1.2.2.3;39.6.1.2.2.2.3 Method 3: Preparation of S-Alkyl Thiocarboxylates and Related Compounds;364
1.11.3.1.2.2.4;39.6.1.2.2.2.4 Method 4: Deprotection or Removal of Functional Groups;365
1.11.3.1.2.2.5;39.6.1.2.2.2.5 Method 5: Miscellaneous Reactions of Sodium Alkanethiolates;367
1.11.3.1.2.3;39.6.1.2.2.3 Applications of Potassium Alkanethiolates;369
1.11.3.1.2.3.1;39.6.1.2.2.3.1 Method 1: Miscellaneous Reactions of Potassium Alkanethiolates;369
1.11.3.1.2.4;39.6.1.2.2.4 Applications of Cesium Alkanethiolates;371
1.11.3.1.2.4.1;39.6.1.2.2.4.1 Method 1: Preparation of Alkyl Sulfides;371
1.11.3.1.2.5;39.6.1.2.2.5 Applications of Halomagnesium Alkanethiolates;372
1.11.3.1.2.5.1;39.6.1.2.2.5.1 Method 1: Deprotection of Functional Groups;372
1.11.4;39.39 Product Class 39: Tellurolanes, Larger Rings, and Derivatives of Various Oxidation States;378
1.11.4.1;39.39.1 Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives;378
1.11.4.2;39.39.2 Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives;380
1.11.4.2.1;39.39.2.1 Synthesis of Product Subclass 2;380
1.11.4.2.1.1;39.39.2.1.1 Cyclic Tellurone Derivatives;380
1.11.4.2.1.1.1;39.39.2.1.1.1 Method 1: Reaction of Spirodioxytelluranes with Hydrogen Peroxide;380
1.11.4.2.1.1.2;39.39.2.1.1.2 Method 2: Reaction of 2,2-Diiodo-1,3-dihydrobenzo[c]tellurophene with Sodium Diethyldithiocarbamate and Related Compounds;381
1.11.4.2.1.1.3;39.39.2.1.1.3 Method 3: Reaction of 1,1-Diiodo-1.4-tellurane with Tetraphenyl Onium Iodides;382
1.12;Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines;384
1.12.1;40.1 Product Class 1: Amino Compounds;384
1.12.1.1;40.1.1.5.5 Metal-Mediated Cyclizations of Amines;384
1.12.1.1.1;40.1.1.5.5.1 Metal-Catalyzed Cycloisomerizations of N-Tethered 1,n-Enynes and 1,n-Dienes;384
1.12.1.1.1.1;40.1.1.5.5.1.1 Enyne Cycloisomerization without Skeletal Reorganization;385
1.12.1.1.1.1.1;40.1.1.5.5.1.1.1 Method 1: Palladium-Catalyzed Cycloisomerization to Pyrrolidine Derivatives;385
1.12.1.1.1.1.1.1;40.1.1.5.5.1.1.1.1 Variation 1: Enantioselective Cycloisomerization of 1,6-Enynes Catalyzed by Chiral Bisphosphine–Palladium Complexes;388
1.12.1.1.1.1.2;40.1.1.5.5.1.1.2 Method 2: Rhodium-Catalyzed 1,6-Enyne Cycloisomerization to Pyrrolidine Derivatives;390
1.12.1.1.1.1.2.1;40.1.1.5.5.1.1.2.1 Variation 1: Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes to Alder-Ene-Type Products;390
1.12.1.1.1.1.2.2;40.1.1.5.5.1.1.2.2 Variation 2: Rhodium-Catalyzed Asymmetric 1,6-Enyne Cycloisomerization of Terminal Alkynes;392
1.12.1.1.1.1.2.3;40.1.1.5.5.1.1.2.3 Variation 3: Rhodium-Catalyzed Enantioselective Reductive Cyclization of 1,6-Enynes;394
1.12.1.1.1.1.3;40.1.1.5.5.1.1.3 Method 3: Ruthenium-Catalyzed Cycloisomerization of 1,6-Enynes;395
1.12.1.1.1.1.4;40.1.1.5.5.1.1.4 Method 4: Titanocene-Catalyzed Cycloisomerization of 1,6-Enynes to Pyrrolidine Derivatives;396
1.12.1.1.1.1.5;40.1.1.5.5.1.1.5 Method 5: Bismuth(III) Chloride Catalyzed Cycloisomerization of 1,6-Enynes;397
1.12.1.1.1.1.6;40.1.1.5.5.1.1.6 Method 6: Nickel-Catalyzed Reductive Cyclization of Unactivated N-Tethered 1,6-Enynes in the Presence of Organozinc Reagents;398
1.12.1.1.1.1.7;40.1.1.5.5.1.1.7 Method 7: Cycloisomerization of 1,6-Enynes Catalyzed by Low-Valent Iron Complexes;401
1.12.1.1.1.1.8;40.1.1.5.5.1.1.8 Method 8: Silver(I)-Catalyzed Cycloisomerization of 1,6-Enynes Containing Propargylic Alcohol Groups;404
1.12.1.1.1.1.8.1;40.1.1.5.5.1.1.8.1 Variation 1: Intramolecular Carbostannylation Catalyzed by Silver(I) Ions;406
1.12.1.1.1.1.9;40.1.1.5.5.1.1.9 Method 9: Gold(I)-Catalyzed Transformations of N-Tethered 1,6-Enynes;407
1.12.1.1.1.1.9.1;40.1.1.5.5.1.1.9.1 Variation 1: Gold(I)-Catalyzed Cycloisomerization of 1,6-Enynes to 1,4-Dienes;407
1.12.1.1.1.1.9.2;40.1.1.5.5.1.1.9.2 Variation 2: Gold(I)-Catalyzed Methoxycyclization of Enynes;408
1.12.1.1.1.1.9.3;40.1.1.5.5.1.1.9.3 Variation 3: Gold-Catalyzed Asymmetric Hydroxycyclization;409
1.12.1.1.1.1.9.4;40.1.1.5.5.1.1.9.4 Variation 4: Gold(I)-Catalyzed Tandem Cyclization/Friedel-Crafts-Type Addition;409
1.12.1.1.1.1.10;40.1.1.5.5.1.1.10 Method 10: Enantioselective Cycloisomerization of 1,7-Enynes to Piperidine Derivatives;410
1.12.1.1.1.2;40.1.1.5.5.1.2 Enyne Cycloisomerization with Skeletal Reorganization;412
1.12.1.1.1.2.1;40.1.1.5.5.1.2.1 Method 1: Gallium(III) Chloride Catalyzed Isomerization of 1,6-Enynes to Eight-Membered Rings;413
1.12.1.1.1.2.2;40.1.1.5.5.1.2.2 Method 2: Rhodium-Catalyzed Asymmetric Cycloisomerization of Nitrogen-Bridged 1,6-Enynes to Bicyclo[4.1.0]hept-4-ene Derivatives;414
1.12.1.1.1.2.3;40.1.1.5.5.1.2.3 Method 3: Gold(I)-Catalyzed Transformations of 1,6-Enynes with Skeletal Rearrangement;416
1.12.1.1.1.2.3.1;40.1.1.5.5.1.2.3.1 Variation 1: Rearrangements to Piperidine Derivatives;417
1.12.1.1.1.2.3.2;40.1.1.5.5.1.2.3.2 Variation 2: Rearrangements of N-Tethered 1,6-Enynes to 3-Azabicyclo[4.1.0]heptene Derivatives;418
1.12.1.1.1.2.3.3;40.1.1.5.5.1.2.3.3 Variation 3: Gold(I)-Catalyzed Cycloisomerizations of Amide-Tethered 1,6-Enynes;424
1.12.1.1.1.2.4;40.1.1.5.5.1.2.4 Method 4: Platinum-Catalyzed Cycloisomerization Reactions of Enynes;426
1.12.1.1.1.2.4.1;40.1.1.5.5.1.2.4.1 Variation 1: Application of Axially Chiral Platinum(II) Complexes;430
1.12.1.1.1.2.4.2;40.1.1.5.5.1.2.4.2 Variation 2: Platinum-Catalyzed Cycloisomerization of Chiral Enynes;431
1.12.1.1.2;40.1.1.5.5.2 Metathesis of N-Tethered Dienes and Enynes;433
1.12.1.1.2.1;40.1.1.5.5.2.1 Method 1: Ring-Closing Metathesis of N-Tethered 1,n-Dienes;435
1.12.1.1.2.1.1;40.1.1.5.5.2.1.1 Variation 1: Ring-Closing Metathesis of 1,n-Dienes in Water as Solvent;441
1.12.1.1.2.2;40.1.1.5.5.2.2 Method 2: Ring-Closing Metathesis of Chiral Dienes: Synthesis of Chiral Five- to Eight-Membered Nitrogen-Containing Heterocycles;445
1.12.1.1.2.2.1;40.1.1.5.5.2.2.1 Variation 1: Synthesis of Optically Active 2-Alkyl-Substituted 2,5-Dihydropyrroles;445
1.12.1.1.2.2.2;40.1.1.5.5.2.2.2 Variation 2: Synthesis of Optically Active Six- to Eight-Membered Nitrogen-Containing Heterocycles;445
1.12.1.1.2.3;40.1.1.5.5.2.3 Method 3: Ring-Rearrangement Metathesis;448
1.12.1.1.2.3.1;40.1.1.5.5.2.3.1 Variation 1: Ring-Rearrangement Metathesis of Cyclopropene Derivatives;448
1.12.1.1.2.3.2;40.1.1.5.5.2.3.2 Variation 2: Synthesis of (–)-Swainsonine by a Ruthenium-Catalyzed Ring-Closing/Ring-Opening Tandem Process;450
1.12.1.1.2.4;40.1.1.5.5.2.4 Method 4: Asymmetric Ring-Closing Metathesis: Synthesis of Nitrogen-Containing Heterocycles;452
1.12.1.1.2.4.1;40.1.1.5.5.2.4.1 Variation 1: Enantioselective Synthesis of Cyclic Amines through Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis;453
1.12.1.1.2.4.2;40.1.1.5.5.2.4.2 Variation 2: Enantioselective Synthesis of Cyclic Amides through Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis;455
1.12.1.1.2.4.3;40.1.1.5.5.2.4.3 Variation 3: Application of Asymmetric Ring-Closing Metathesis to the Enantioselective Synthesis of Quebrachamine;458
1.12.1.1.2.4.4;40.1.1.5.5.2.4.4 Variation 4: Microwave-Induced Ring-Closing Metathesis of Dienes;461
1.12.1.1.2.5;40.1.1.5.5.2.5 Method 5: Ring-Closing Metathesis of N-Tethered Enynes;462
1.12.1.1.2.5.1;40.1.1.5.5.2.5.1 Variation 1: exo-Selective Enyne Ring-Closing Metathesis Promoted by Ruthenium Carbenes: Efficient Synthesis of Chiral Five-Membered Nitrogen-Containing Heterocycles;464
1.12.1.1.2.5.2;40.1.1.5.5.2.5.2 Variation 2: endo-Selective Enyne Ring-Closing Metathesis Promoted by Stereogenic-at-Molybdenum Complexes;465
1.12.1.1.2.5.3;40.1.1.5.5.2.5.3 Variation 3: Enantioselective Molybdenum-Catalyzed Ring-Closing Metathesis Reactions of Dienynes;467
1.12.1.1.2.5.4;40.1.1.5.5.2.5.4 Variation 4: Ring-Closing Metathesis of Chiral Enynes; Synthesis of Six- and Seven-Membered Chiral Nitrogen-Containing Heterocycles;468
1.12.1.1.2.6;40.1.1.5.5.2.6 Method 6: Tandem Enyne Ring-Closing Metathesis and Selective Hydrogenation to a Tricyclic Carbamate;469
1.12.1.1.2.7;40.1.1.5.5.2.7 Method 7: Ruthenium-Catalyzed Tandem Ring-Opening/Ring-Closing/Cross Metathesis of Cyclopropene-Containing 1,6-Enynes and Alkenes;470
1.12.1.1.3;40.1.1.5.5.3 Transition-Metal-Catalyzed Cycloaddition Reactions of N-Tethered 1,n-Enynes, 1,n-Diynes, and 1,n-Dienes;471
1.12.1.1.3.1;40.1.1.5.5.3.1 Method 1: Synthesis of Nitrogen-Containing Heterocycles by Pauson-Khand Reaction of Enynes;472
1.12.1.1.3.1.1;40.1.1.5.5.3.1.1 Variation 1: Diastereoselective Pauson–Khand Reaction of Nitrogen-Containing 1,n-Enynes and 1,n-Dienes;473
1.12.1.1.3.1.2;40.1.1.5.5.3.1.2 Variation 2: Asymmetric Pauson–Khand-Type Reaction Mediated by a Rhodium(I) Catalyst at Ambient Temperature;475
1.12.1.1.3.1.3;40.1.1.5.5.3.1.3 Variation 3: Rhodium(I)-Catalyzed Carbonylative [5 + 2 + 1] and [3 + 2 + 1] Carbocyclization: Synthesis of Fused Cyclooctenones, Cyclohexenones, and Phenol Derivatives;477
1.12.1.1.3.1.4;40.1.1.5.5.3.1.4 Variation 4: Rhodium-Catalyzed Pauson–Khand-Type Reaction Using an Alcohol as a Source of Carbon Monoxide;480
1.12.1.1.3.2;40.1.1.5.5.3.2 Method 2: Transition-Metal-Mediated Cycloaddition and Cyclization Reactions of 2-Methylpropane-2-sulfinamide-Tethered Enyne and Diyne Substrates;482
1.12.1.1.3.3;40.1.1.5.5.3.3 Method 3: Regio- and Enantioselective Intermolecular Rhodium-Catalyzed [2 + 2 + 2]-Cycloaddition Reactions of 1,6-Enynes;488
1.12.1.1.3.3.1;40.1.1.5.5.3.3.1 Variation 1: Intramolecular Rhodium-Catalyzed [2 + 2 + 2] Cyclizations of N-Tethered 1,6-Diynes with a,ß-Unsaturated Carbonyl Compounds under Microwave Irradiation;494
1.12.1.1.3.3.2;40.1.1.5.5.3.3.2 Variation 2: [2 + 2 + 2] Cycloaddition of 1,6-Enynes with Electron-Deficient Ketones Catalyzed by a Cationic Rhodium(I)/H8-BINAP Complex;495
1.12.1.1.3.3.3;40.1.1.5.5.3.3.3 Variation 3: Cyclotrimerization of N-Tethered 1,6-Diynes with Triple Bonds: Synthesis of Chiral Aromatic Compounds;497
1.12.1.1.3.3.4;40.1.1.5.5.3.3.4 Variation 4: Enantioselective Synthesis of Chiral Polycyclic Compounds with Quaternary Carbon Stereocenters by Catalytic Intramolecular Cycloaddition;500
1.12.1.1.3.3.5;40.1.1.5.5.3.3.5 Variation 5: Enantioselective Synthesis of Axially Chiral N,N-Dialkylbenzamides by Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition of N-Tethered Diynes with N,N-Dialkylalkynylbenzamides;503
1.12.1.1.3.3.6;40.1.1.5.5.3.3.6 Variation 6: Palladium-Catalyzed Tandem Reaction of N-Tethered 1,6-Diynyl Carbonates with 2,3-Dienoic Acids;504
1.12.1.1.3.4;40.1.1.5.5.3.4 Method 4: Metal-Catalyzed Intramolecular Diels–Alder Reactions of Unactivated Alkynes To Give Bi- and Polycyclic Nitrogen-Containing Heterocycles;505
1.12.1.1.3.4.1;40.1.1.5.5.3.4.1 Variation 1: Gold-Catalyzed [4 + 2] Cycloadditions of N-Tethered Dienallenes;509
1.12.1.1.3.5;40.1.1.5.5.3.5 Method 5: Sequential Platinum-Catalyzed Cycloisomerization and Cope Rearrangement of N-Tethered Dienynes;514
1.12.1.1.3.6;40.1.1.5.5.3.6 Method 6: Rhodium-Catalyzed Intramolecular Cyclization of Cyclopropyl-Containing N-Tethered 1,6-Dienes;516
1.12.1.1.4;40.1.1.5.5.4 Transition-Metal-Catalyzed Cyclization/Coupling Reactions of Unsaturated Amines and Amides;518
1.12.1.1.4.1;40.1.1.5.5.4.1 Method 1: Mizoroki–Heck Reactions of Amines and Amides;519
1.12.1.1.4.1.1;40.1.1.5.5.4.1.1 Variation 1: Palladium-Catalyzed Domino Coupling/Cycloisomerization of N-Tethered 1,6-Enynes;519
1.12.1.1.4.2;40.1.1.5.5.4.2 Method 2: Synthesis of Annulated Hexahydro-1H-benzo[f]isoindole Derivatives;521
1.12.1.1.4.3;40.1.1.5.5.4.3 Method 3: Synthesis of Haouamine Precursors by Cascade Mizoroki–Heck Cyclization;522
1.12.1.1.4.4;40.1.1.5.5.4.4 Method 4: Preparation of Nitrogen-Containing Spiro-Fused Dihydroindolones by Palladium-Catalyzed Tandem Mizoroki–Heck Reaction/C--H Functionalization;523
1.12.1.1.5;40.1.1.5.5.5 Cross-Coupling Reactions of N-Tethered 1,6-Dienes and 1,6-Enynes;526
1.12.1.1.5.1;40.1.1.5.5.5.1 Method 1: Palladium-Catalyzed Cycloalkylations of N-Tethered 2-Bromo-1,6-dienes with Organoboronic Acids;526
1.12.1.1.5.2;40.1.1.5.5.5.2 Method 2: Palladium-Catalyzed Tandem Cyclization/Suzuki Coupling of N-Tethered 1,6-Enynes To Give Mono- and Bicyclic Heterocycles;527
1.12.1.1.5.3;40.1.1.5.5.5.3 Method 3: Palladium-Mediated Cascade Cross-Coupling/Electrocyclization Approach to the Construction of Fused Bi- and Tricyclic Rings;528
1.13;Author Index;538
1.14;Abbreviations;568
1.15;List of All Volumes;574


Abstracts
2.10.18 Organometallic Complexes of Titanium
T. Takeda and A. Tsubouchi This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the preparation of organometallic complexes of titanium. ? Section 2.10.18.1 focuses on the preparation of titanocene alkylidenes by the reductive titanation of thioacetals, gem-dihalides, and alkyl halides, and their synthetic application in carbonyl alkenation reactions. ? Section 2.10.18.2 highlights the preparation of titanocene derivatives of metallacyclobutanes derived from titanocene alkylidenes and alkenes, and their synthetic application, mainly in the metathesis reaction. Other types of degradation of titanacyclobutanes such as reductive elimination and ß-hydride elimination are also included. In connection with alkene metathesis, titanacyclobutenes, which are intermediates for enyne metathesis, are also discussed. Keywords: alkenation · alkene metathesis · alkenes · alkenylcyclopropanes · carbene complexes · conjugate dienes · ß-hydride elimination · reductive titanation · titanacyclobutanes · titanacyclobutenes · titanium complexes · titanocenes 4.4.2.5 Silenes (Update 1)
H. Ottosson and A. M. Rouf The topic of this update is synthesis of silenes, compounds with Si=C bonds, which are generally highly reactive and sensitive to the ambient atmosphere. Synthetic routes published since 2001 yielding either persistent silenes or transient silenes that can be trapped by suitable reagents are discussed. Both novel routes and modifications of earlier established routes, now employing less forcing conditions than previously reported, are covered. Keywords: silicon compounds · silenes · unsaturated compounds · lithium compounds · rearrangement · Peterson alkenation · elimination · isomerization 4.4.2.6 Silenes (Update 2)
H. Ottosson and J. Ohshita This section describes the synthesis of silen-2-olates, silicon analogues of enolates with formal Si=C bonds, for example through trimethylsilyl–metal exchange of acylpolysilanes using organolithium or organopotassium reagents. The fundamental reactions of silenolates and the structural differences between silenolates dominated by keto-form versus enol-form resonance structures are also presented. Keywords: silicon compounds · silenes · silenolates · silyl anions · lithium compounds · potassium compounds · mercury compounds · silyl–metal exchange 20.2.1.2.10 Synthesis from Carboxylic Acid Derivatives A. K. Mourad and C. Czekelius This manuscript is an update to the earlier Science of Synthesis contribution describing general methods to synthesize carboxylic acids from their derivatives. This update addresses more specific methods, new developments, and transformations of carboxylic acid derivatives which were not covered in the original contribution. Keywords: acid catalysts · carboxylic acid derivatives · carboxylic acids · enzyme catalysis · esters · halo compounds · hydrazides · hydrolysis · oxidative cleavage · photolysis · reductive cleavage · silyl esters 20.5.1.2.8 Synthesis from Carboxylic Acids and Derivatives A. K. Mourad and C. Czekelius This manuscript is an update to the earlier Science of Synthesis contribution describing general methods to synthesize esters from carboxylic acids and their derivatives. This update addresses more specific methods, new developments, and transformations of carboxylic acid derivatives which were not covered in the original contribution. Keywords: alkylations · carboxylic acid derivatives · carboxylic acids · enzyme catalysis · esters · halo compounds · hydrazides · oxidative cleavage · thioesters 27.7.6 Imines
S. Dekeukeleire, M. D’hooghe, and N. De Kimpe This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of imines. It focuses on the literature published in the period 2004–2010. Keywords: 2H-azirines · imines · N-unsubstituted imines · N-silyl imines · N-alkyl imines · N-aryl imines · 2,3-dihydroazetes · imino esters · nitrogen heterocycles · synthesis design 27.8.2 Iminium Salts
S. Dekeukeleire, M. D’hooghe, and N. De Kimpe This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of iminium salts. It focuses on the literature published in the period 2004–2010. Keywords: iminium salts · nitrogen heterocycles · synthesis design 39.3.9 Alkanesulfinic Acids and Acyclic Derivatives
R. Kawecki This chapter is an update to the earlier Science of Synthesis, Section 39.3, describing the synthesis and applications of alkanesulfinic acids and acyclic derivatives. It includes discussion of the applications of alkanesulfinyl halides and the synthesis of alkanesulfinic acid esters, alkanethiosulfinic acid esters, and alkanesulfinamides, focusing on the literature in the period 2006–2010. It also contains an extension of the coverage of the previous contribution describing the synthesis and applications of N-alkylidenealkanesulfinamides, here focusing on literature in the period 1997–2010. Keywords: sulfinyl halides · sulfinic acid esters · sulfinates · sulfinylation · sulfoxides · aziridines · asymmetric synthesis · boron trichloride complexes · thiosulfinic acid esters · thiosulfinates · disulfides · asymmetric oxidation · sulfinamides · N-sulfinylimines · sulfinimines · 1,2-addition · allylation · nucleophilic addition · imines 39.5.2 Alkanethiols
D. Witt This manuscript is an update to the earlier Science of Synthesis contribution on alkanethiols, and describes applications of alkanethiols as a starting material in organic synthesis. Thiols can be converted into sulfonic, sulfinic, and sulfenic acids and their derivatives, as well as sulfides, disulfides, polysulfides, sulfonium salts, and thiiranes, etc. These transformations are accomplished by nucleophilic displacement or addition, oxidation, condensation, or coupling reactions involving the thiol group. Keywords: alkanethiols · organosulfur compounds · sulfur electrophiles · sulfur functional groups · sulfur nucleophiles · sulfur oxidation states 39.6.1.2 Alkanethiolates of Group 1, 2, and 13–15 Metals
D. Witt This update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkanethiolates of group 1, 2, and 13–15 metals focuses on applications of these compounds in organic synthesis. Alkanethiolates can be converted into S-alkyl thiocarboxlyates, 1-thioglycosides, S-alkyl thiosulfinates, tetrahydro-1,4-thiazin-3-ones, sulfides, disulfides, sulfonium salts, dithioacetals, and dithioketals. These transformations are accomplished by nucleophilic displacement or addition, condensation, or coupling reactions involving the thiolate group. Keywords: alkanethiolates · S-alkyl thiocarboxylates · disulfides · dithioacetals · dithioketals · organosulfur compounds · sulfur electrophiles · sulfides · sulfonium salts · sulfur nucleophiles · thioacetals · 1-thioglycosides 39.39.1 Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives
T. Kimura The topic of this section is cyclic compounds with one or more tellurium atoms, where the tellurium atom bears one sp3 carbon atom, two tellurium-heteroatom double bonds (Te=OorTe=N), and one Te-X single bond (X = O, NR1, S, etc.; R1 = H or other substituent); or one sp3 carbon atom and five single bonds: one Te-X and four Te-Z (Z = OR1, NR12,SR1, halogen, etc.; R1 = H or other substituent). Thus, this product subclass contains cyclic telluronic acid esters, cyclic telluronic acid thioesters, cyclic telluronic acid amides, and their derivatives. However, at present, no examples of such compounds have been prepared in a stable form. Keywords: tellurium · telluronic acid esters · telluronic acid thioesters · telluronic acid amides 39.39.2 Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives
T. Kimura This section describes the synthesis of cyclic compounds with one or more tellurium atoms, where a tellurium atom bridges two sp3 carbon atoms to form a cyclic structure and this tellurium atom has two...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.