Carcaterra / Paolone / Graziani Proceedings of XXIV AIMETA Conference 2019
1. Auflage 2020
ISBN: 978-3-030-41057-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 2200 Seiten
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-3-030-41057-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book gathers the peer-reviewed papers presented at the XXIV Conference of the Italian Association of Theoretical and Applied Mechanics, held in Rome, Italy, on September 15-19, 2019 (AIMETA 2019). The conference topics encompass all aspects of general, fluid, solid and structural mechanics, as well as mechanics for machines and mechanical systems, including theoretical, computational and experimental techniques and technological applications. As such the book represents an invaluable, up-to-the-minute tool, providing an essential overview of the most recent advances in the field.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Acknowledgements;7
3;Contents;8
4;General Mechanics;24
5;Correlation Between Fracto-Emissions and Statistical Seismic Precursors in the Case of Low-Magnitude Earthquakes;25
5.1;Abstract;25
5.2;1 Introduction;26
5.3;2 Experimental Results;28
5.4;3 Conclusions;31
5.5;References;32
6;On Constitutive Choices for Growth Terms in Binary Fluid Mixtures;33
6.1;1 Introduction;33
6.2;2 Balance Axioms for Binary Mixtures of Fluids;34
6.3;3 `Vis Viva' Theorem and Constitutive Proposals for Exchange Terms;36
6.4;4 Small Plane Vibrations in Binary Mixtures;37
6.4.1;4.1 Superfluid Helium;38
6.4.2;4.2 Mixture of Euler Fluids;41
6.5;5 Concluding Remark;44
6.6;References;45
7;Fluid Mechanics;46
8;An Investigation About Polygonal Steady Vortices;47
8.1;1 Introduction;47
8.2;2 Equilibrium Condition;50
8.3;3 Isolated Polygonal Vortex;53
8.4;4 Vorticity Structure Formed by Uniform and Pointwise Vortices;57
8.5;5 Concluding Remarks and Unsolved Issues;63
8.6;References;63
9;Numerical Study on the Flow Field Generated by a Double-Orifice Synthetic Jet Device;65
9.1;1 Introduction;65
9.2;2 Numerical Setup;66
9.2.1;2.1 Data Reduction;68
9.3;3 Results and Discussion;69
9.3.1;3.1 Time-Averaged Flow Fields;71
9.3.2;3.2 Phase-Averaged Flow Fields;73
9.4;4 Conclusions and Future Work;75
9.5;References;75
10;Dynamics of a Bubble Moving Through a Liquid;77
10.1;1 Introduction;77
10.2;2 The Mathematical Model;79
10.3;3 Dynamics of the Center of Mass;81
10.4;4 Dynamics of the Bubble Radius;83
10.5;5 Numerical Results and Comparison with Previous Models;84
10.6;6 Conclusions;88
10.7;References;89
11;Preliminary Design of Variable-Pitch Systems for Darrieus Wind Turbine Using a Genetic Algorithm Based Optimization Procedure;90
11.1;Abstract;90
11.2;1 Introduction;91
11.3;2 Test Case;92
11.4;3 Cam-Based Active Variable-Pitch System;95
11.4.1;3.1 The Optimization Tool;96
11.4.2;3.2 Results;97
11.4.3;3.3 An Alternate Active Variable-Pitch System;100
11.5;4 Conclusions;101
11.6;References;102
12;Free Topology Generation of Thermal Protection System for Reusable Space Vehicles Using Integral Soft Objects;104
12.1;1 Introduction;104
12.2;2 Implicit Modelling;105
12.2.1;2.1 Implicit Surface Modelling;105
12.2.2;2.2 Integral Soft Objects Modelling;107
12.3;3 Skeleton Based Integral Soft Object Modelling of TPS;108
12.4;4 Material-Based Sizing of Thermal Protection System;110
12.4.1;4.1 Parametric Modelling of SBISO Primitives;111
12.5;5 Modelling Procedure Capability;114
12.6;6 Conclusions;115
12.7;References;117
13;On the Stability of Subsonic Impinging Jets;119
13.1;1 Introduction;119
13.2;2 Theoretical Framework;121
13.2.1;2.1 Flow Configuration and Governing Equations;121
13.2.2;2.2 Stability and Sensitivity Analysis;123
13.2.3;2.3 Dynamic Mode Decomposition;124
13.3;3 Numerical Setup and Validation;125
13.3.1;3.1 Direct Numerical Simulation;126
13.3.2;3.2 Stability and Sensitivity Analysis;126
13.4;4 DNS and DMD Results;127
13.5;5 Stability Analysis;130
13.6;6 Conclusions;134
13.7;References;135
14;Jet-Flat Plate Interaction: Wall Pressure Coherence Modeling;137
14.1;1 Introduction;137
14.2;2 Model Description;138
14.3;3 Model Assessment;140
14.4;4 Conclusions;142
14.5;References;142
15;Numerical Simulation of Shock Boundary Layer Interaction Using Shock Fitting Technique;144
15.1;1 Introduction;144
15.2;2 Shock Fitting Algorithm;145
15.2.1;2.1 Step 1: Cell Removal Around the Shock Front;146
15.2.2;2.2 Step 2: Local Re-meshing Around the Shock Front;146
15.2.3;2.3 Step 3: Grid Assembly;146
15.2.4;2.4 Step 4: Calculation of the Unit Vectors Normal to the Shock Front;146
15.2.5;2.5 Step 5: Solution Update Using a Shock-Capturing Code and Enforcement of the R-H Relations;148
15.3;3 Numerical Simulation of Shock/Boundary-Layer Interaction;149
15.3.1;3.1 Pressure Field Analysis;149
15.3.2;3.2 Numerical Models;150
15.4;4 Results and Discussion;151
15.5;5 Conclusion;153
15.6;References;153
16;Solid and Structural Mechanics;155
17;Diffraction and Reflection of Antiplane Shear Waves in a Cracked Couple Stress Elastic Material;156
17.1;1 Introduction;156
17.2;2 Theory of Couple Stress Materials;157
17.3;3 Time-Harmonic Analysis;160
17.4;4 Analysis in the Frequency Domain;162
17.5;5 Full-Field Solution by the Wiener-Hopf Method;164
17.6;6 Results;165
17.6.1;6.1 Wave Pattern;165
17.6.2;6.2 Energy Release Rate;167
17.7;7 Conclusions;168
17.8;References;168
18;Corrosion Fatigue Investigation on the Possible Collapse Reasons of Polcevera Bridge in Genoa;170
18.1;1 Introduction;170
18.2;2 Analitical Models for the Morandi Bridge;172
18.3;3 Stress Redistribution Due to Corrosion;173
18.4;4 Fatigue Assessment of Cable-Stay;176
18.4.1;4.1 Evaluation of the Fatigue Load Spectrum;176
18.4.2;4.2 Fatigue Damage Accumulation;176
18.5;5 Conclusions;177
18.6;References;178
19;Investigation into Benefits of Coupling a Frame Structure with a Rocking Rigid Block;179
19.1;1 Introduction;179
19.2;2 Motivations of the Study;180
19.3;3 Mechanical Model of the Experimented System;181
19.3.1;3.1 Equations of Motion;181
19.3.2;3.2 Uplift and Impact Conditions of the Block;184
19.4;4 Parametric Analisys;184
19.4.1;4.1 Frame and Block Characteristics;185
19.4.2;4.2 Gain Coefficients;185
19.4.3;4.3 Gain Map;185
19.5;5 Experimental Tests;187
19.5.1;5.1 Experimental Setup;187
19.5.2;5.2 Gain Spectra;188
19.6;6 Conclusions;191
19.7;References;191
20;Base Isolation Systems for Structures Subject to Anomalous Dynamic Events;194
20.1;Abstract;194
20.2;1 Introduction;194
20.3;2 The Mathematical Modeling of the Base Isolation System;195
20.4;3 Modeling of the Base Isolation Device;198
20.5;4 The Proposed Base Isolation System Applied to a Structure Subject to Anomalous Dynamic Actions;199
20.6;5 Conclusions;204
20.7;References;205
21;Fractality and Size Effect in Fatigue Damage Accumulation: Comparison Between Paris and Wöhler Perspectives;207
21.1;1 Introduction;207
21.2;2 The Crack-Size Effects on Paris' Law;208
21.2.1;2.1 Intermediate Asymptotics and Fractal Geometry;208
21.2.2;2.2 Experimental Comparisons;209
21.3;3 The Specimen-Size Effects on Wöhler's Curve;210
21.3.1;3.1 Intermediate Asymptotics and Fractal Geometry;210
21.3.2;3.2 Experimental Comparisons;211
21.4;4 The Crack-Size Effect on the Fatigue Threshold;212
21.4.1;4.1 Fractal and Multifractal Approaches;212
21.4.2;4.2 Experimental Comparisons;213
21.5;5 The Specimen-Size Effect on the Fatigue Limit;213
21.5.1;5.1 Fractal Approach;213
21.5.2;5.2 Experimental Comparisons;214
21.6;6 Conclusions;214
21.7;References;215
22;Smart Beam Element Approach for LRPH Device;216
22.1;Abstract;216
22.2;1 Introduction;217
22.3;2 Geometrical and Mechanical Characteristics of LRPH;218
22.4;3 The Smart Displacement Based (SDB) Beam Element for Discontinuous Beams;221
22.4.1;3.1 A Model for Discontinuous Euler-Bernoulli Beams;221
22.4.2;3.2 The Nonlinear Smart Displacement Based (SDB) Beam Element;223
22.4.3;3.3 The Element Stiffness Matrix by Means of a Fibre Approach;225
22.5;4 Application;227
22.6;5 Conclusions;229
22.7;Acknowledgements;229
22.8;Appendix;230
22.9;References;230
23;Reliable Measures of Plastic Deformations for Elastic Plastic Structures in Shakedown Conditions;233
23.1;Abstract;233
23.2;1 Introduction;233
23.3;2 Position of the Problem;235
23.4;3 Optimization Problem;237
23.5;4 Application;239
23.6;5 Conclusions;240
23.7;References;240
24;Preliminary Experimental Results of Shaking Table Tests on MDOF Structure Equipped with Non-conventional TMD;242
24.1;Abstract;242
24.2;1 Introduction;242
24.3;2 Physical Models;243
24.4;3 Shaking Table Tests;244
24.4.1;3.1 Experimental Set-up;244
24.4.2;3.2 Input Signals;245
24.5;4 Experimental Response;245
24.5.1;4.1 4-Story Structure - F4;246
24.5.2;4.2 3-Story Structure with Support Plane - F3S;246
24.5.3;4.3 3-Story Structure Equipped with the Non-conventional TMD - FTMD;246
24.6;5 Conclusions;250
24.7;References;250
25;JKR, DMT and More: Gauging Adhesion of Randomly Rough Surfaces;252
25.1;1 Introduction;252
25.2;2 Adhesion of Rough Elastic Media;254
25.2.1;2.1 Modeling Adhesion with the Advanced Asperity Model ICHA in the DMT and JKR Limits;255
25.2.2;2.2 Results;256
25.3;3 Conclusions;259
25.4;References;260
26;Mechanics of Machines and Mechanical Systems;262
27;A New Pneumatic Pad Controlled by Means of an Integrated Proportional Valve;263
27.1;Abstract;263
27.2;1 Introduction;263
27.3;2 The New Prototype of Pneumatic Pad;264
27.3.1;2.1 Experimental Characterization of the Valve;266
27.3.2;2.2 Static Tests on the Active Pad in Open Loop;268
27.4;3 The Numerical Model;270
27.4.1;3.1 Static Model of the Pad;270
27.4.1.1;3.1.1 Supply Orifice Model;270
27.4.1.2;3.1.2 Model of the Air Gap;271
27.4.2;3.2 Dynamic Model of the Pad;272
27.4.3;3.3 Model of the Proportional Valve;274
27.4.3.1;3.3.1 Static Model of the Valve;274
27.4.3.2;3.3.2 Dynamic Model of the Valve;275
27.5;4 Comparison with Experimental Data;276
27.5.1;4.1 Tests on the Valve Alone;276
27.5.2;4.2 Tests on Valve and Pad;277
27.6;5 Conclusions and Future Work;278
27.7;References;278
28;Oral Exostoses and Congruence of the Contact in the Temporo-Mandibular Joint;280
28.1;Abstract;280
28.2;1 Introduction;280
28.3;2 The Buccal Maxillary Exostosis Under Study;281
28.4;3 Congruence Measurement and Contact Evaluation;283
28.4.1;3.1 Congruence Measure;283
28.4.2;3.2 Application to the Case Study;283
28.5;4 Results and Discussion;284
28.6;5 Conclusions;286
28.7;References;287
29;Mechatronic Design of a Robotic Arm to Remove Skins by Wine Fermentation Tanks;289
29.1;Abstract;289
29.2;1 Introduction;289
29.3;2 Robotic Arm: Type Synthesis;291
29.4;3 Robotic Arm: Mechatronic Design;293
29.5;4 Conclusions;294
29.6;References;295
30;Kinematic Analysis of Slider – Crank Mechanisms via the Bresse and Jerk’s Circles;296
30.1;Abstract;296
30.2;1 Introduction;296
30.3;2 Kinematic Analysis: Velocity, Acceleration and Jerk Poles;297
30.4;3 Bresse and Jerk’s Circles: Examples;300
30.5;4 Conclusions;302
30.6;REFERENCES;302
31;Numerical and Experimental Analysis of Small Scale Horizontal-Axis Wind Turbine in Yawed Conditions;303
31.1;1 Introduction;304
31.2;2 The Test Case and the On-site Measurements;304
31.2.1;2.1 Experimental Set Up: The Wind Turbine and the Wind Tunnel;304
31.2.2;2.2 The FAST Model;307
31.2.3;2.3 The BEM Code;308
31.3;3 Analysis and Results;310
31.3.1;3.1 Study of Power and Thrust;310
31.3.2;3.2 Thrust Measurement;312
31.3.3;3.3 Thrust and Accelerations Spectrograms;313
31.4;4 Conclusions;314
31.5;References;315
32;Field Vibrational Analysis of a Full Scale Horizontal-Axis Wind Turbine in Actual Operating Conditions;317
32.1;1 Introduction;317
32.2;2 The Test Case and the On-site Measurements;319
32.3;3 Data Post-processing;321
32.4;4 Conclusions;326
32.5;References;327
33;Static Balancing of an Exechon-Like Parallel Mechanism;328
33.1;Abstract;328
33.2;1 Introduction;328
33.3;2 Description of the Studied Parallel Mechanism;329
33.4;3 Gravity Compensation of the PKM;331
33.4.1;3.1 Exact Gravity Compensation of the Moving Platform;331
33.4.2;3.2 Approximate Gravity Compensation of the Legs;336
33.5;4 Conclusions;338
33.6;References;338
34;Analysis of Agricultural Machinery to Reduce the Vibration to the Operator Seat;340
34.1;1 Introduction;340
34.2;2 Theoretical Background;341
34.2.1;2.1 Dynamic Substructuring;342
34.2.2;2.2 Modal Reduction, the Craig-Bampton Method;344
34.2.3;2.3 Transmissibility;345
34.3;3 Models;345
34.3.1;3.1 Lumped Parameter Models of the Agricultural Tractor;345
34.3.2;3.2 Reduced Order Model of the Rear Mounted Three Points Linkage;345
34.3.3;3.3 Rear Mounted or Semi-mounted Machinery;347
34.3.4;3.4 Coupling of the Substructures;347
34.4;4 Results;348
34.4.1;4.1 Effect of Damping on the Vibration Level on the Operator Seat;348
34.4.2;4.2 Experimental Validation;350
34.4.3;4.3 Effect of the Mounted Machinery to the Vibrations on the Operator Seat;350
34.4.4;4.4 Sensitivity Analysis of the Operator Seat Vibration to the Suspension Parameters;352
34.5;5 Conclusions;352
34.6;References;353
35;An Inverse Dynamics Approach Based on the Fundamental Equations of Constrained Motion and on the Theory of Optimal Control;354
35.1;1 Introduction;355
35.2;2 Literature Survey;355
35.3;3 Materials and Methods;356
35.4;4 Results and Discussion;359
35.5;5 Summary and Conclusions;365
35.6;References;366
36;Interface Models and Phase-field Approaches for Fracture and Damage Mechanics;371
37;Damaging of FRCM Composites Through a Micro-scale Numerical Approach;372
37.1;1 Introduction;372
37.2;2 Modeling Approach;373
37.3;3 Results;377
37.3.1;3.1 Tensile Constitutive Behavior;377
37.3.2;3.2 Parameter Sensitivity Analysis;378
37.4;4 Conclusions;382
37.5;References;382
38;Mixed-Mode Delamination with Large Displacement Modeling of Fiber-Bridging;384
38.1;1 Introduction;384
38.2;2 Small Openings Cohesive Model;385
38.3;3 Transition to Fiber-Bridging Model;388
38.4;4 Numerical Examples;390
38.4.1;4.1 Fracture Energy Evolution in MMB Tests;390
38.4.2;4.2 DCB Test;391
38.5;5 Conclusions;393
38.6;References;393
39;An Experimental and Numerical Study to Evaluate the Crack Path Under Mixed Mode Loading on PVC Foams;395
39.1;Abstract;395
39.2;1 Introduction;395
39.3;2 Experimental Tests;397
39.3.1;2.1 Compression Tests;397
39.3.2;2.2 Fracture Tests;400
39.4;3 Numerical Simulation;402
39.5;4 Conclusions;403
39.6;Acknowledgements;403
39.7;References;403
40;Interphase Model and Phase-Field Approach for Strain Localization;406
40.1;1 Introduction;407
40.2;2 The 1D Phase-Field Model;408
40.3;3 Application;410
40.4;4 Conclusions;411
40.5;References;412
41;Multiple Crack Localization and Debonding Mechanisms for Thin Thermal Coating Films;414
41.1;1 Introduction;414
41.2;2 Substrate and Coating Layer;415
41.2.1;2.1 The Nonlocal Damage Model for the Coating;417
41.2.2;2.2 The Cohesive-Frictional Interface Model;419
41.3;3 Numerical Application;420
41.3.1;3.1 Thin Coating Results;420
41.3.2;3.2 Thick Coating Results;421
41.4;References;423
42;Progressive Damage in Quasi-brittle Solids;425
42.1;1 Introduction;425
42.2;2 The Local State;427
42.2.1;2.1 The Convex Constraints;428
42.3;3 Equilibrium;428
42.3.1;3.1 Variation wrt u;429
42.3.2;3.2 Variations wrt i;429
42.3.3;3.3 Variation wrt d;429
42.4;4 Dissipation;430
42.5;5 The Traction Bar;432
42.6;6 Closure;435
42.7;References;435
43;Cohesive-Frictional Interface in an Equilibrium Based Finite Element Formulation;436
43.1;Abstract;436
43.2;1 Introduction;436
43.3;2 The Hybrid Equilibrium Formulation;437
43.4;3 Extrinsic Cohesive-Frictional Model;439
43.4.1;3.1 Damage Activation Condition;440
43.4.2;3.2 Frictional Limit Condition;441
43.5;4 Numerical Simulation;441
43.6;5 Conclusions;442
43.7;Acknowledgment;442
43.8;References;442
44;Layered Phase Field Approach to Shells;444
44.1;1 Introduction;444
44.2;2 Layered Phase-Field Approach to Thin and Slender Structures;445
44.2.1;2.1 Phase Field Models;445
44.2.2;2.2 Structural Theories;446
44.2.3;2.3 Phase Field Models and Structural Theories: A Layered Approach;447
44.3;3 Results;449
44.3.1;3.1 Three Point Bending Beam;450
44.3.2;3.2 Three Point Bending Reinforced Beam;451
44.3.3;3.3 Simply Supported Square Plate;451
44.4;4 Conclusions;453
44.5;References;453
45;Composites in Civil Engineering;455
46;Interface Laws for Multi-physic Composites;456
46.1;1 Introduction;456
46.2;2 Statement of the Problem;457
46.3;3 The Asymptotic Expansions Method;459
46.4;4 The Multi-physic Interface Models;460
46.4.1;4.1 The Soft Multi-physic Interface;460
46.4.2;4.2 The Hard Multi-physic Interface;461
46.4.3;4.3 The Rigid Multi-physic Interface;462
46.4.4;4.4 The General Multi-physic Interface;462
46.5;5 Finite Element Implementation and Numerical Test;463
46.5.1;5.1 Numerical Study: The Piezoelectric Composite Plate;464
46.6;6 Concluding Remarks;468
46.7;References;468
47;Study of the Bond Behavior of FRCM-Masonry Joints Using a Modified Beam Test;470
47.1;Abstract;470
47.2;1 Introduction;470
47.3;2 Experimental Results;471
47.4;3 Analytical Model;473
47.4.1;3.1 Compatibility Conditions;473
47.4.2;3.2 Equilibrium Equations;474
47.4.3;3.3 Governing Equation at the Matrix-Fiber Interface;475
47.4.4;3.4 Cohesive Material Law;475
47.5;4 Evaluation of the Debonding Phenomenon;476
47.5.1;4.1 Elastic Stage;477
47.5.2;4.2 Elastic-Softening Stage;478
47.5.3;4.3 Elastic-Softening-Debonding Stage;479
47.5.4;4.4 Softening-Debonding Stage;481
47.5.5;4.5 Fully Debonded Stage;482
47.6;5 Results and Comparison;482
47.6.1;5.1 Estimation of the CML Parameters;482
47.6.2;5.2 Comparison Between Experimental and Analytical Results;484
47.7;6 Conclusions;485
47.8;References;485
48;Basalt-Based FRP Composites as Strengthening of Reinforced Concrete Members: Experimental and Theoretical Insights;487
48.1;1 Introduction;487
48.2;2 Flexural Behaviour of BFRP-Strengthened Concrete Members: An Analytical Assessment;488
48.3;3 BFRP-Concrete End-Debonding: Experimental Results;493
48.3.1;3.1 Experimental Program;494
48.3.2;3.2 Results;496
48.4;4 BFRP-Concrete Debonding Load: Refinement Proposal of Technical Design Formulations;497
48.5;5 Conclusions;499
48.6;References;500
49;Numerical Modelling of GFRP Reinforced Thin Concrete Slabs;502
49.1;Abstract;502
49.2;1 Introduction;502
49.3;2 Overview of the Experimental Results;503
49.4;3 FEM Modelling;504
49.4.1;3.1 Material and Interface Modelling;505
49.4.2;3.2 Geometry and Boundary Conditions Modelling;507
49.5;4 Results;508
49.6;5 Discussion;510
49.7;6 Conclusions;511
49.8;References;512
50;Optimal Epoxy Dilution for Epoxy-Coated Textile Reinforced Mortar (TRM): An Experimental Perspective;514
50.1;1 Introduction;515
50.2;2 Materials and Methods;516
50.2.1;2.1 Materials;516
50.2.2;2.2 Laminates Preparation;518
50.2.3;2.3 Experimental Investigation;519
50.3;3 Results and Discussion;520
50.3.1;3.1 Mechanical Testing Outcomes;520
50.3.2;3.2 Viscosity Measurement and SEM Analysis;522
50.4;4 Conclusions;524
50.5;References;525
51;Numerical-Parametric Analysis of Debonding Phenomena in FRCM-Strengthened Masonry Elements;527
51.1;Abstract;527
51.2;1 Introduction;528
51.3;2 Mechanical Properties of Frcm;528
51.4;3 Failure Modes of Frcm;530
51.5;4 Interface Models Present in Literature;531
51.6;5 Numerical Modeling;534
51.7;6 Proposed Modeling Strategy;535
51.8;7 Parametric Analisis;536
51.9;8 Conclusions;539
51.10;References;540
52;Analytical Modelling of the Tensile Response of PBO-FRCM Composites;542
52.1;Abstract;542
52.2;1 Introduction;542
52.3;2 Analytical Model for Tensile Tests;543
52.3.1;2.1 Analytical Simulation of Clevis-Grip Tensile Tests;545
52.4;3 Experimental Results;548
52.5;4 Comparison Between Analytical and Experimental Results;548
52.6;5 Conclusions;549
52.7;References;550
53;An Inter-element Fracture Approach for the Analysis of Concrete Cover Separation Failure in FRP-Reinforced RC Beams;552
53.1;Abstract;552
53.2;1 Introduction;553
53.3;2 Cohesive Methodology in a 2D Finite Element Framework;554
53.4;3 Description of the Numerical Model for FRP-Plated RC Beams;555
53.5;4 Validation of the Diffuse Interface Model;557
53.6;5 Concrete Cover Separation Analysis;559
53.7;6 Conclusions;562
53.8;Acknowledgement;563
53.9;References;563
54;Fiber-Reinforced Brittle-Matrix Composites: Discontinuous Phenomena and Optimization of the Components;565
54.1;Abstract;565
54.2;1 Introduction;565
54.3;2 Crack Growth Stability in Fibrous Composites;566
54.4;3 Brittle Matrix Structural Elements Reinforced with a Large Number of Fibers;567
54.5;4 Conclusions;571
54.6;References;571
55;Bond Behavior of TRM Systems and Reinforcement of Masonry Arches: Testing and Modelling;573
55.1;Abstract;573
55.2;1 Introduction;573
55.3;2 Materials and Methods;575
55.3.1;2.1 Specimens and Test Apparatus;575
55.3.2;2.2 Test Results and Discussion;577
55.4;3 TRM-Reinforced Masonry Arches. An Analytical Model;580
55.4.1;3.1 The Four-Bar Linkage for the Definition of the Un-strengthened Arch Mechanism;580
55.4.2;3.2 Definition of the Strengthened Configuration;582
55.5;4 Discussion and Conclusions;583
55.6;References;584
56;Investigation of Microscopic Instabilities in Fiber-Reinforced Composite Materials by Using Multiscale Modeling Strategies;586
56.1;Abstract;586
56.2;1 Introduction;587
56.3;2 Theoretical Formulation;588
56.4;3 Description of Two Alternative Multiscale Approaches for the Microscopic Stability Analysis;589
56.4.1;3.1 Semi-concurrent Multiscale Approach;589
56.4.2;3.2 Hybrid Hierarchical/Concurrent Multiscale Approach;590
56.5;4 Numerical Results;591
56.5.1;4.1 Example 1: Bending of a Cantilever Beam Reinforced with Continuous Fibers;591
56.5.2;4.2 Example 2: Bending of a Simply Supported Beam Reinforced with Staggered Discontinuous Fibers;593
56.6;5 Conclusions;595
56.7;Acknowledgments;595
56.8;References;596
57;Mechanics and Materials;598
58;Mechanoluminescence in Scintillators;599
58.1;1 Introduction;599
58.2;2 Scintillators as Continua with Microstructure;600
58.2.1;2.1 Deformable Scintillators as Continua with Microstructure;600
58.2.2;2.2 The Excitation Carriers Density and the Scintillation Self-power;601
58.3;3 Balance Laws and Thermodynamics;603
58.3.1;3.1 Balance Laws;603
58.3.2;3.2 Thermodynamics;604
58.4;4 Mechanoluminescence;605
58.4.1;4.1 Totally Dissipative Scintillators. Constitutive Assumptions;605
58.4.2;4.2 Linearized Kinematics;606
58.5;5 Conclusions;607
58.6;References;607
59;Effective Constitutive Behavior of Heterogeneous Materials Comprising Bimodular Phases;609
59.1;1 Introduction;609
59.2;2 Materials and Methods;610
59.2.1;2.1 Numerical Procedure;612
59.3;3 Results;613
59.4;4 Conclusions;618
59.5;References;618
60;Locally Resonant Materials for Energy Harvesting at Small Scale;620
60.1;1 Introduction;620
60.2;2 Problem Description;622
60.2.1;2.1 Derivation of the Effective Properties for the LRM Parts;624
60.2.2;2.2 Governing Equations and General Solutions of the REH Problem;626
60.3;3 Transmission Analyses: Preliminary Studies;627
60.3.1;3.1 Infinitely Long Barrier;627
60.3.2;3.2 Tunneling Through a Single Finite Barrier;628
60.4;4 REH: The Enhancing of the Cavity Mechanical Energy;628
60.4.1;4.1 Average Energy Density Derivation;628
60.4.2;4.2 Optimization of the Energy Enhancement;630
60.4.3;4.3 Average Energy Density Inside the Homogeneous Parts;631
60.4.4;4.4 Average Energy Density Inside the Barriers;631
60.5;5 Example;633
60.6;6 Conclusions;637
60.7;References;638
61;Mechanics of Chemo-Mechanical Stimuli Responsive Soft Polymers;641
61.1;Abstract;641
61.2;1 Introduction;641
61.3;2 Micromechanics of a Polymer Network;642
61.4;3 Mechanics of Responsive Molecules;645
61.4.1;3.1 Physics of Responsive Molecules;645
61.4.2;3.2 Mechanics of Polymers in Presence of Swelling;646
61.4.3;3.3 Mechanics of Polymers with Responsive Molecules;647
61.5;4 Simulations;647
61.5.1;4.1 Polymer with Spiropyran Responsive Molecules Undera Mechanical Stress;647
61.5.2;4.2 Polymer with Molecules Responsive to a Chemical Stimulus;649
61.6;5 Conclusions;650
61.7;References;650
62;Time-Harmonic Dynamics of Curved Beams;652
62.1;1 Introduction;652
62.2;2 Dynamics of a Curved Beam;653
62.3;3 Dispersion Properties;655
62.3.1;3.1 Normalisation;655
62.3.2;3.2 Analytical Solution;656
62.3.3;3.3 Frequency Regimes;656
62.3.4;3.4 Propagating Modes;658
62.4;4 Transmission Problem;659
62.4.1;4.1 Transfer Matrix;660
62.4.2;4.2 Power Flow;662
62.4.3;4.3 Reflection, Transmission and Coupling;663
62.5;5 Conclusion;664
62.6;References;665
63;The Effects of a Large Elastic Mismatch on the Decohesion of Thin Films from Substrates;666
63.1;Abstract;666
63.2;1 Introduction;666
63.3;2 Model;667
63.4;3 Energy Release Rate and Mode Mixity Angle;669
63.5;4 Results and Discussion;670
63.6;5 Conclusions;672
63.7;Acknowledgments;673
63.8;References;673
64;Development of a Data Reduction Method for Composite Fracture Characterization Under Mode III Loadings;674
64.1;Abstract;674
64.2;1 Introduction;674
64.3;2 Method;676
64.4;3 Results;682
64.5;4 Conclusions;683
64.6;Acknowledgements;683
64.7;References;683
65;Mechanical Model of Fiber Morphogenesis in the Liver;685
65.1;1 Introduction;685
65.2;2 Species Diffusion in a Crystal Lattice;686
65.2.1;2.1 Kinematics, Kinetics and Species Power Balance;686
65.2.2;2.2 Power Balance Laws;688
65.2.3;2.3 Free Energy Imbalance;688
65.2.4;2.4 Free Energy Expression and Constitutive Characterization;689
65.2.5;2.5 Fick's Law;690
65.3;3 Cahn-Hilliard Equation;690
65.3.1;3.1 Free Energy;690
65.3.2;3.2 Microforce Balance Law;691
65.3.3;3.3 Dissipation Inequality;691
65.3.4;3.4 Balance Law Summary;692
65.4;4 Allen-Cahn Equation;693
65.4.1;4.1 Dissipation Inequality;693
65.4.2;4.2 Balance Law Summary;694
65.5;5 Active Species Diffusion;694
65.5.1;5.1 Uphill Diffusion and Aggregation;694
65.5.2;5.2 Active Chemical Potential Constitutive Characterization;695
65.6;6 Numerical Simulations;697
65.7;References;701
66;Modeling Approach and Finite Element Analyses of a Shape Memory Epoxy-Based Material;703
66.1;Abstract;703
66.2;1 Introduction;704
66.3;2 Materials and Methods;705
66.3.1;2.1 Experimental Characterization;705
66.3.2;2.2 Material Modelling;706
66.3.3;2.3 Star Folding Tests;709
66.3.4;2.4 Star Folding Model;710
66.4;3 Results;711
66.4.1;3.1 Material Characterization;712
66.4.2;3.2 Star Folding;715
66.5;4 Conclusions;716
66.6;References;717
67;Visco-Elasto-Plastic Experimental Characterization of Flax-Based Composites;719
67.1;1 Introduction;719
67.2;2 Rheological Models of Viscoleastic and Viscoplastic Materials;720
67.3;3 Materials and Methods;723
67.3.1;3.1 Monotonic Tensile Tests;723
67.3.2;3.2 Load-Unload Incremental Tests;723
67.3.3;3.3 Cyclic Tests;723
67.3.4;3.4 Creep;724
67.4;4 Experimental Results;724
67.5;5 Discussion;727
67.6;References;728
68;Discrete Homogenization Procedure for Estimating the Mechanical Properties of Nets and Pantographic Structures;730
68.1;1 Introduction;730
68.2;2 Homogenization of Periodic Discrete Medium;731
68.2.1;2.1 1D Model - Flexural Deformation;733
68.2.2;2.2 Strong Formulation;734
68.2.3;2.3 Weak Formulation;736
68.3;3 Discrete Homogenization for 2D Networks;738
68.3.1;3.1 Case Studies;738
68.4;4 Numerical Simulations;741
68.4.1;4.1 Fibre Network Material with Square Cells Rigidly Connected;742
68.4.2;4.2 Square Cell with Different Fibre Properties;742
68.4.3;4.3 Quadriaxial Network;743
68.5;5 Conclusion;745
68.6;References;745
69;Device Influence in Single Molecule Isotensional Experiments;747
69.1;1 Introduction;747
69.2;2 Model;749
69.3;3 Mechanical Limit;751
69.4;4 Temperature Effects;753
69.5;5 Discussions;755
69.6;References;756
70;Poro-Mechanical Analysis of a Biomimetic Scaffold for Osteochondral Defects;758
70.1;Abstract;758
70.2;1 Introduction;758
70.3;2 Mathematical Model;759
70.4;3 Results;763
70.5;4 Conclusions;767
70.6;References;767
71;Deformability Analysis and Improvement in Stretchable Electronics Systems Through Finite Element Analysis;769
71.1;1 Introduction;769
71.2;2 Materials and Methods;771
71.3;3 Results and Discussion;773
71.4;4 Conclusions;776
71.5;References;776
72;On the Role of Interatomic Potentials for Carbon Nanostructures;778
72.1;1 Introduction;778
72.2;2 The Molecular Mechanics Model;779
72.2.1;2.1 The Damped DREIDING Potential;783
72.3;3 Parametrization of the Interatomic Potentials and Numerical Results;784
72.3.1;3.1 SLGSs Under Periodic Conditions;784
72.3.2;3.2 Critical Discussion About the Bonding Potentials;786
72.3.3;3.3 Tensile Tests of SLGSs of Finite Size;789
72.4;4 Conclusions;792
72.5;References;793
73;Impact of Sunlight on the Durability of Laminated Glass Panes;795
73.1;Abstract;795
73.2;1 Introduction;795
73.3;2 Mechanical Model for Thermo Viscoelasticity;797
73.3.1;2.1 Creep Compliance and Relaxation Modulus;797
73.3.2;2.2 Master Curve;798
73.3.3;2.3 Time Temperature Superposition Principle;799
73.4;3 Experimental Analysis;800
73.5;4 Numerical Simulation of Tests on Blank Specimens;802
73.6;5 Analysis of the Consequences of Solar Radiation;804
73.7;6 Conclusions;807
73.8;References;808
74;Multiscale Analysis of Materials with Anisotropic Microstructure as Micropolar Continua;810
74.1;1 Introduction;811
74.2;2 Anisotropic Theory of Micropolar Elasticity;811
74.3;3 Finite Element Formulation;812
74.4;4 Numerical Applications;814
74.5;5 Conclusions;819
74.6;References;819
75;Experimental Evaluation of Piezoelectric Energy Harvester Based on Flag-Flutter;821
75.1;1 Introduction;821
75.2;2 Experimental Setup;823
75.2.1;2.1 Methodology;823
75.2.2;2.2 Setup;823
75.2.3;2.3 Results and Discussion;826
75.3;3 Conclusions;829
75.4;References;829
76;Modelling and Analysis of Small-Scale Structures;831
77;Experimental Investigation on Structural Vibrations by a New Shaking Table;832
77.1;1 Introduction;832
77.2;2 Materials and Methods;834
77.2.1;2.1 The Test-Rig;834
77.2.2;2.2 The Mathematical Model;837
77.3;3 Results;839
77.4;4 Conclusions;841
77.5;References;841
78;Bending and Buckling of Timoshenko Nano-Beams in Stress-Driven Approach;845
78.1;1 Introduction;845
78.2;2 Non-local Timoshenko Beam Model;846
78.3;3 Modified Total Potential Energy for Non-local Timoshenko Beams;847
78.4;4 Numerical Solutions by the Ritz Method;850
78.4.1;4.1 Cantilever Timoshenko Nano-Beam Subject to a Distributed Transverse Load;851
78.4.2;4.2 Buckling Load of Timoshenko Nano-Beam;851
78.5;5 Conclusions;853
78.6;References;854
79;Shear Effects in Elastic Nanobeams;855
79.1;1 Introduction;855
79.2;2 Problem Position;856
79.2.1;2.1 Beam's Constitutive Equations;857
79.3;3 The Beam Problem;858
79.4;4 Strategy Solution of the Governing Beam's Equations;860
79.4.1;4.1 Evaluation of the Stresses;862
79.5;5 Numerical Application and Conclusions;863
79.6;References;866
80;Theoretical and Applied Biomechanics;867
81;Cardiac Fluid Dynamics in Prolapsed and Repaired Mitral Valve;868
81.1;Abstract;868
81.2;1 Introduction;868
81.3;2 Materials and Methods;870
81.3.1;2.1 Geometries;870
81.3.2;2.2 Numerical Model;873
81.4;3 Results;874
81.4.1;3.1 Fluid Dynamics Analysis;874
81.5;4 Conclusion;877
81.6;References;877
82;A Patient-Specific Mechanical Modeling of Metastatic Femurs;879
82.1;1 Introduction;880
82.2;2 Materials and Methods;881
82.2.1;2.1 Case Study;881
82.2.2;2.2 CT-Based FE Modelling;882
82.2.3;2.3 FE Analyses;884
82.3;3 Results;885
82.4;4 Discussion;887
82.5;5 Conclusions;889
82.6;References;890
83;Exploring THz Protein Vibrations by Means of Modal Analysis: All-Atom vs Coarse-Grained Model;892
83.1;Abstract;892
83.2;1 Introduction;892
83.3;2 Methodology;894
83.3.1;2.1 All-Atom Model Based on Covalent Bonds;894
83.3.2;2.2 Coarse-Grained Model Based on Backbone Bonds;895
83.3.3;2.3 Coarse-Grained Space Truss Model with Long-Range Interactions;896
83.4;3 Results and Discussion;897
83.5;4 Conclusions;898
83.6;References;898
84;Protein Conformational Changes: What Can Geometric Nonlinear Analysis Tell Us?;900
84.1;Abstract;900
84.2;1 Introduction;900
84.3;2 Methodology;902
84.3.1;2.1 Protein Elastic Network Model;902
84.3.2;2.2 Evaluation of the Open-to-Closed Conformational Change;903
84.3.3;2.3 Equilibrium Equations in the Undeformed Structure (Linear Analysis);904
84.3.4;2.4 Equilibrium Equations in the Deformed Structure (Geometric Nonlinear Analysis);904
84.3.5;2.5 Comparison Between Linear and Nonlinear Analysis;905
84.4;3 Results and Discussion;905
84.5;4 Conclusions;907
84.6;References;908
85;Comparison Between Numerical and MRI Data of Ascending Aorta Hemodynamics in a Circulatory Mock Loop;909
85.1;1 Introduction;910
85.2;2 Problem Definition;910
85.3;3 Numerical Methodology and Simulation Set-Up;911
85.4;4 Experimental Set-Up;912
85.5;5 Main Results;914
85.6;6 Conclusions;917
85.7;References;917
86;Development of a Fully Controllable Real-Time Pump to Reproduce Left Ventricle Physiological Flow;919
86.1;1 Introduction;920
86.2;2 Materials and Methods;921
86.2.1;2.1 Waveform Analytic Modeling;921
86.2.2;2.2 Pump System HW and SW;923
86.2.3;2.3 Validation Tests;923
86.3;3 Results;925
86.4;4 Discussion;926
86.5;5 Conclusions;928
86.6;References;929
87;A Genetic Algorithm for the Estimation of Viscoelastic Parameters of Biological Samples Manipulated by Mems Tweezers;931
87.1;1 Introduction;931
87.2;2 Experimental Technique;933
87.3;3 Mechanical Model;934
87.4;4 Genetic Algorithm Implementation;937
87.5;5 Simulations and Results;938
87.6;6 Conclusions;940
87.7;References;940
88;A Single Integral Approach to Fractional Order Non-Linear Hereditariness;943
88.1;1 Introduction;943
88.2;2 The Fractional Hereditary Materials (FHM);945
88.3;3 The Non-Linear Model of Material Hereditariness;948
88.3.1;3.1 The Non-Linear Creep and Relaxation Function;948
88.3.2;3.2 The Single Integral Model of Fractional-Order Material Hereditariness;951
88.3.3;3.3 Numerical Analysis;953
88.4;4 Conclusions;954
88.5;References;954
89;Shell and Spatial Structures;956
90;R-Funicularity of Analytical Shells;957
90.1;1 Introduction;957
90.2;2 Funicular Shells;958
90.2.1;2.1 Form-Finding of Compressed Shells by the Membrane Theory;959
90.2.2;2.2 Funicular Shells on a Rectangular Base;959
90.2.3;2.3 R-Funicularity;962
90.3;3 Numerical Comparisons;963
90.4;4 Conclusions;966
90.5;References;966
91;Stability Evaluation by Digital Image Correlation of a Masonry Vault Prototype Under Loading;968
91.1;Abstract;968
91.2;1 Introduction;968
91.3;2 Form Finding and HP;970
91.4;3 Experimental Tests: The Physical Model;972
91.5;4 Digital Image Correlation;973
91.6;5 Conclusions;975
91.7;References;976
92;On the Straight-Helicoid to Spiral-Ribbon Transition in Thin Elastic Ribbons;977
92.1;1 Introduction;977
92.2;2 Thin Ribbons as Internally Constrained Rods;978
92.3;3 The Straight Helicoidal and Spiral Ribbon States;981
92.4;4 Classification of Equilibrium States;984
92.5;References;985
93;Pressure Field Correlation for Buildings with Hyperbolic Paraboloid Roofs: Results of Wind-Tunnel Tests;987
93.1;Abstract;987
93.2;1 Introduction;987
93.3;2 Wind-Tunnel Experimental Campaign;988
93.3.1;2.1 The Sample Model;989
93.3.2;2.2 Wind-Tunnel Pressure Coefficients;989
93.4;3 Pressure Field Correlation;991
93.4.1;3.1 Dependence of Pressure Coefficients on the Size of the Reference Area;991
93.4.2;3.2 Effective Pressure Coefficients;991
93.4.3;3.3 Results of Wind-Tunnel Tests;993
93.5;4 Conclusions;997
93.6;Acknowledgments;997
93.7;References;998
94;Equilibrium Analysis of a Sail Vault in Livorno’s Fortezza Vecchia Through a Modern Re-edition of the Stability Area Method;999
94.1;Abstract;999
94.2;1 Introduction;999
94.3;2 Structural Analysis of Sail Vaults: A Brief Overview;1002
94.4;3 Geometrical and Mechanical Parameters Characterizing the Sail Vault in Fortezza Vecchia;1003
94.5;4 Assessment of the Sail Vault Stability;1004
94.5.1;4.1 A Modern Version of Durand-Claye’s Method for Equilibrium Analysis of Sail Vaults;1004
94.6;5 Conclusions;1006
94.7;Acknowledgments;1007
94.8;References;1007
95;Vehicle Dynamics;1009
96;Front Wheel Patter Instability of Motorcycles in Straight Braking Manoeuvre;1010
96.1;Abstract;1010
96.2;1 Introduction;1010
96.3;2 Minimal Model;1011
96.3.1;2.1 Description of the Model;1011
96.3.2;2.2 Non-linear Equations of Motion;1013
96.3.3;2.3 Linearized Constitutive Equation of the Longitudinal Ground Force;1014
96.3.4;2.4 Linearized Equations of Motion;1016
96.4;3 Stability Analysis;1017
96.4.1;3.1 Stability Maps;1017
96.4.2;3.2 Comparison with a Multibody Planar Motorcycle Model;1023
96.4.3;3.3 The Source of Instability;1026
96.5;4 Conclusions;1028
96.6;References;1028
97;T.R.I.C.K. Real Time. A Tool for the Real-Time Onboard Tire Performance Evaluation;1029
97.1;Abstract;1029
97.2;1 Introduction;1030
97.3;2 The Algorithm;1031
97.3.1;2.1 Algorithm Stages;1031
97.3.2;2.2 Input Parameters;1031
97.3.3;2.3 Input Signals;1031
97.3.4;2.4 Signal Filtering;1032
97.3.5;2.5 Model Structure;1032
97.3.5.1;2.5.1 Tire Forces;1032
97.3.5.2;2.5.2 Lateral Opposite Force Correction;1034
97.3.5.3;2.5.3 Delta Angles and Inclination Angles;1037
97.4;3 Comparison of Trick Forces with Pacejka Model;1038
97.5;4 Conclusions and Further Developments;1040
97.6;References;1040
98;Preliminary Implementation of Model-Based Algorithms for Truck Tire Characterizations from Outdoor Sessions;1042
98.1;Abstract;1042
98.2;1 Introduction;1043
98.3;2 Data Acquisition Procedure;1044
98.3.1;2.1 Vehicle and Instruments;1044
98.3.2;2.2 Test Procedure;1045
98.4;3 The Tool;1045
98.4.1;3.1 Input Parameters;1045
98.4.2;3.2 Input Signals;1046
98.4.3;3.3 Model Structure;1046
98.4.3.1;3.3.1 Tire Forces;1046
98.4.3.2;3.3.2 Tangential Forces in Wheel Reference System;1048
98.4.3.3;3.3.3 Slip Indices;1049
98.5;4 Results Analysis and Tire-Road Interaction;1049
98.6;5 Conclusions and Further Developments;1052
98.7;References;1053
99;Experimental Activity for the Analysis of Tires Tread Responses at Different Conditions with a Dynamic Dial Indicator;1054
99.1;Abstract;1054
99.2;1 Introduction;1054
99.3;2 Device and Acquired Signal Description;1055
99.4;3 Testing Procedure Description;1058
99.5;4 Output Signal Processing;1058
99.6;5 Temperature Effect on Tire Compounds Analysis;1061
99.7;6 Analysis of Further Effects on Tires Compound Behaviour;1065
99.8;7 Conclusions;1067
99.9;Acknowledgment;1068
99.10;References;1068
100;A Physical-Analytical Model for Friction Hysteretic Contribution Estimation Between Tyre Tread and Road Asperities;1070
100.1;Abstract;1070
100.2;1 Introduction;1071
100.3;2 Theoretical Analysis;1074
100.4;3 Simulations;1078
100.5;4 Further Model Improvements;1080
100.6;5 Conclusions;1082
100.7;References;1083
101;Torque Vectoring Control for Fully Electric SAE Cars;1084
101.1;Abstract;1084
101.2;1 Introduction;1084
101.3;2 Vehicle Model;1085
101.4;3 Torque Vectoring Control;1088
101.5;4 Reference Trajectory and Driver Model;1089
101.6;5 Preliminary Results;1090
101.7;6 Conclusions;1092
101.8;References;1092
102;On the Implementation of an Innovative Temperature-Sensitive Version of Pacejka’s MF in Vehicle Dynamics Simulations;1093
102.1;Abstract;1093
102.2;1 Introduction;1094
102.3;2 Tire Analysis and Simulation Tools;1095
102.3.1;2.1 TRICK;1095
102.3.2;2.2 TRIP-ID;1096
102.3.3;2.3 Thermal and Grip Models;1097
102.4;3 MF-evo Interaction Model;1098
102.5;4 Conclusions;1100
102.6;References;1101
103;Towards T.R.I.C.K. 2.0 – A Tool for the Evaluation of the Vehicle Performance Through the Use of an Advanced Sensor System;1102
103.1;Abstract;1102
103.2;1 Introduction;1103
103.3;2 Laser Sensors;1103
103.4;3 Roll Angle Estimation;1104
103.5;4 Aerodynamic Forces Formulation;1106
103.5.1;4.1 Aerodynamic Maps;1106
103.5.2;4.2 Aerodynamic Forces Calculation;1107
103.6;5 Conclusion;1110
103.7;References;1110
104;On the Torque Steer Problem for Front-Wheel-Drive Electric Cars;1112
104.1;Abstract;1112
104.2;1 Introduction;1112
104.3;2 Torque Steer Theory;1114
104.3.1;2.1 Case 1;1115
104.3.2;2.2 Case 2;1116
104.3.3;2.3 Case 3;1117
104.3.4;2.4 Case 4;1119
104.4;3 Analysis of the Torque Steer Effects;1120
104.4.1;3.1 Suspension Kinematics and Its Effects;1121
104.4.2;3.2 Torque Vectoring and Its Effects;1123
104.4.3;3.3 Suspension Re-design for Torque Vectoring;1126
104.5;4 Track Laps;1129
104.6;5 Conclusions;1132
104.7;References;1133
105;Analysis of Multiscale Theories for Viscoelastic Rubber Friction;1134
105.1;Abstract;1134
105.2;1 Introduction;1134
105.3;2 Experimental Data;1137
105.3.1;2.1 Viscoelastic Modulus;1137
105.3.2;2.2 Surface Roughness Power Spectrum;1139
105.3.3;2.3 Friction;1139
105.4;3 Analysis of Multiscale Theories;1140
105.5;4 Conclusions;1143
105.6;References;1144
106;A Preliminary Study for the Comparison of Different Pacejka Formulations Towards Vehicle Dynamics Behaviour;1145
106.1;Abstract;1145
106.2;1 Introduction;1146
106.3;2 Simulation Environment;1147
106.4;3 Manoeuvers;1147
106.5;4 Implementation and Results;1148
106.6;5 KPI and Sensitivity Test;1151
106.7;6 Conclusions;1152
106.8;References;1153
107;Novel Approaches in Computational Mechanics;1154
108;Large Rotation Finite Element Analysis of 3D Beams Based on Incremental Rotation Vector and Exact Strain Measures;1155
108.1;1 Introduction;1155
108.2;2 An Overview of 3D Rotations;1157
108.2.1;2.1 Rotation Tensor;1157
108.2.2;2.2 Additive Variations;1157
108.2.3;2.3 Variations of Rotation and Curvature Tensors with Respect to the Rotation Vector;1158
108.2.4;2.4 Kinematics of the 3D Beam Structural Model;1158
108.3;3 A New Finite Element Formulation;1160
108.3.1;3.1 From Incremental to Local Variables;1160
108.3.2;3.2 Internal Force Vector and Tangent Stiffness Matrix in Corotational Variables;1161
108.3.3;3.3 Internal Force Vector and Tangent Stiffness Matrix in Incremental Variables;1161
108.4;4 Numerical Tests;1162
108.4.1;4.1 Deployable Ring;1162
108.5;5 Conclusions;1165
108.6;References;1165
109;MEMS Resonators: Numerical Modeling;1167
109.1;1 Introduction;1167
109.2;2 Double-Ended Tuning Fork Resonator;1168
109.3;3 Numerical Modeling;1169
109.4;4 Fabrication;1172
109.5;5 Conclusions;1173
109.6;References;1173
110;A Mixed Membrane Finite Element for Masonry Structures;1175
110.1;1 Introduction;1175
110.2;2 Hu–Washizu Mixed Formulation;1177
110.3;3 Interpolation of Unknown Fields;1178
110.3.1;3.1 Displacement and Stress Interpolation;1179
110.3.2;3.2 Strain Interpolation;1179
110.4;4 Element State Determination;1179
110.5;5 Numerical Simulations;1181
110.6;6 Conclusions;1183
110.7;References;1183
111;Isogeometric Collocation Methods for the Nonlinear Dynamics of Three-Dimensional Timoshenko Beams;1187
111.1;1 Introduction;1187
111.2;2 Theoretical Background;1189
111.2.1;2.1 The Configuration Manifold and Its Tangent Spaces;1189
111.3;3 Balance Equations in Strong Form;1190
111.4;4 Time and Space Discretizations;1190
111.4.1;4.1 Explicit (Spatial) Newmark Scheme;1190
111.4.2;4.2 Implicit (Material) Newmark Scheme;1191
111.5;5 Numerical Results;1192
111.5.1;5.1 Swinging Flexible Pendulum;1192
111.5.2;5.2 Three-Dimensional Flying Beam;1193
111.6;6 Conclusions;1195
111.7;References;1195
112;Meso-Scale Prediction of Insulating Mortar Thermal Properties;1198
112.1;1 Introduction;1198
112.2;2 The Mesoscale Model;1199
112.3;3 Meso-Scale Simulations;1200
112.4;4 Conclusions;1205
112.5;References;1206
113;Implicit G1-Conforming Plate Elements;1208
113.1;1 Introduction;1208
113.2;2 The CG1-Finite Element Formulation;1210
113.2.1;2.1 Triangular Case: P4 and the S12 Polynomial Interpolation Spaces;1210
113.2.2;2.2 Quadrilateral Case: Q3 Polynomial Interpolation Spaces;1211
113.3;3 The Gregory Patches;1211
113.3.1;3.1 Gregory Patches Properties;1213
113.3.2;3.2 Change of Basis;1215
113.3.3;3.3 Conforming Interpolation for the Displacement wh;1216
113.3.4;3.4 Elimination of the Corners Discontinuities;1216
113.3.5;3.5 Constrained CG1/3- and CG1/4-Formulations;1218
113.4;4 Numerical Investigations;1219
113.4.1;4.1 Patch Test;1219
113.4.2;4.2 Simply Supported Square Plate Under Uniform Pressure;1221
113.5;5 Conclusions;1223
113.6;References;1223
114;Enhanced Beam Formulations with Cross-Section Warping Under Large Displacements;1225
114.1;1 Introduction;1225
114.2;2 Mixed 3D Beam Finite Element;1226
114.3;3 Direct 1D Beam Model;1229
114.4;4 Applications and Comparisons;1230
114.4.1;4.1 Computational Details for the Mixed 3D Beam FE;1231
114.4.2;4.2 Results;1232
114.5;5 Conclusions;1235
114.6;References;1236
115;An Orthotropic Multi-surface Elastic-Damaging-Plastic Model with Regularized XFEM Interfaces for Wood Structures;1238
115.1;1 Introduction;1238
115.2;2 Two-Dimensional Multi-surface Elastic-Plastic-Damaging Constitutive Model;1240
115.2.1;2.1 Ductile Failure Modes;1241
115.2.2;2.2 Brittle Failure Modes;1243
115.2.3;2.3 The Multi-surface Failure Envelope;1244
115.3;3 The Regularized Extended Finite Element Method (RE-XFEM);1245
115.3.1;3.1 Regularized Discontinuous Regime;1246
115.3.2;3.2 Continuous-Discontinuous Transition;1247
115.4;4 Results;1247
115.4.1;4.1 Double Cantilever Beam (DCB) Tests;1247
115.4.2;4.2 Embedment Tests;1249
115.5;5 Conclusions;1250
115.6;References;1251
116;A Numerical Study on Explicit vs Implicit Time Integration of the Vermeer-Neher Constitutive Model;1253
116.1;1 Introduction;1253
116.2;2 Constitutive Relationship and Residual Definition;1254
116.2.1;2.1 Residual Definition for the Local Problem;1256
116.3;3 Calculation of the Overall Stiffness Matrix;1258
116.4;4 Numerical Tests;1259
116.4.1;4.1 Test 1: Monotonic Loading;1259
116.4.2;4.2 Test 2: Loading and Unloading;1261
116.4.3;4.3 Subsidence Evaluation for a Case Study;1262
116.5;References;1263
117;A Full Orthotropic Bond-Based Peridynamic Formulation for Linearly Elastic Solids;1265
117.1;1 Introduction;1265
117.2;2 Micropolar Peridynamics;1267
117.2.1;2.1 A Full Orthotropic Model;1272
117.3;3 Validation of the Micropolar Model in Elasticity;1277
117.3.1;3.1 Natural Frequency Analysis;1282
117.4;4 Conclusions;1285
117.5;References;1285
118;Mechanics and Geometry;1289
119;Mechanics of Surface Growth: Stability of 1D and 2D Treadmilling Systems;1290
119.1;1 Introduction;1290
119.2;2 Model;1291
119.2.1;2.1 Setting;1291
119.2.2;2.2 Mechanics;1292
119.2.3;2.3 Diffusion;1292
119.2.4;2.4 Growth;1293
119.2.5;2.5 Constitutive Behaviour;1293
119.3;3 Reduction to a Differential Algebraic System;1294
119.3.1;3.1 Mechanics;1294
119.3.2;3.2 Diffusion;1295
119.3.3;3.3 Growth;1295
119.3.4;3.4 Differential-Algebraic System;1296
119.4;4 Treadmilling Solutions and Stability;1296
119.4.1;4.1 Existence and Uniqueness of Solutions;1296
119.4.2;4.2 Stability of Solutions;1297
119.4.3;4.3 Lack of Solutions;1298
119.5;5 Conclusions;1298
119.6;References;1299
120;Dynamics and Stability of Mechanical Systems;1300
121;Condition Monitoring of Wind Turbine Gearboxes Through On-site Measurement and Vibration Analysis Techniques;1301
121.1;1 Introduction;1301
121.2;2 The Test Case and the On-site Measurements;1303
121.3;3 Analysis and Results;1306
121.4;4 Conclusions;1310
121.5;References;1311
122;A Damage Identification Procedure for Steel Truss;1313
122.1;Abstract;1313
122.2;1 Introduction;1313
122.3;2 Direct Problem;1314
122.3.1;2.1 Stochastic State Space Model;1317
122.3.2;2.2 Stochastic Subspace Identification;1317
122.4;3 Modal and Damage Identification;1319
122.5;4 Conclusions;1320
122.6;Acknowledgments;1321
122.7;References;1321
123;Stability Analysis of Parametrically Excited Gyroscopic Systems;1322
123.1;Abstract;1322
123.2;1 Introduction;1322
123.3;2 Model and Methods;1323
123.3.1;2.1 Equations of Motion;1323
123.3.2;2.2 Harmonic Balance Method;1326
123.4;3 Stability Analysis;1327
123.4.1;3.1 Simple Shaft Without Gyroscopic and Stabilizing Damping Effects;1327
123.4.2;3.2 Simple Shaft with Stabilizing Damping Effects;1328
123.4.3;3.3 Simple Shaft with Gyroscopic Effects;1330
123.4.4;3.4 Simple Shaft with Gyroscopic and Internal (Rotating) Damping Effects;1332
123.4.5;3.5 Shaft with Additional Inertial Elements;1334
123.5;4 Conclusions;1336
123.6;References;1337
124;The Relaxation Function in Viscoelasticity: Classical and Non-classical Thermodynamically Admissible Examples;1338
124.1;1 Introduction;1338
124.2;2 General Framework of the Problem: The Viscoelasticity Model;1339
124.3;3 Non Regular Kernels;1341
124.3.1;3.1 Unbounded Kernels;1341
124.3.2;3.2 Weakly Regular Kernels;1342
124.4;4 Conclusions and Perspectives;1342
124.5;References;1343
125;An Efficient Computational Strategy for Nonlinear Time History Analysis of Seismically Base-Isolated Structures;1346
125.1;1 Introduction;1346
125.2;2 Nonlinear Equilibrium Equations;1348
125.3;3 Conventional Solution Strategy;1349
125.3.1;3.1 Phenomenological Models;1349
125.3.2;3.2 Conventional Time Integration Method;1350
125.4;4 Proposed Solution Strategy;1351
125.4.1;4.1 Proposed Phenomenological Model;1352
125.4.2;4.2 Proposed Explicit Time Integration Method;1353
125.5;5 Numerical Experiments;1354
125.5.1;5.1 Base-Isolated Structure Properties;1355
125.5.2;5.2 Applied Earthquake Excitation;1355
125.5.3;5.3 Hysteretic Models Parameters;1355
125.5.4;5.4 Numerical Results;1355
125.6;6 Conclusions;1357
125.7;References;1358
126;Rubber-Layer Roller Bearings (RLRB) for Base Isolation: The Non-linear Dynamic Behavior;1360
126.1;Abstract;1360
126.2;1 Introduction;1360
126.3;2 Formulation;1362
126.4;3 Results;1364
126.4.1;3.1 Sinusoidal Excitation;1366
126.4.2;3.2 Seismic Excitation;1367
126.5;4 Conclusions;1368
126.6;References;1368
127;A Closed Form Solution for the Buckling Analysis of Orthotropic Reddy Plate and Prismatic Plate Structures;1370
127.1;Abstract;1370
127.2;1 Introduction;1370
127.3;2 Problem Formulation;1371
127.4;3 Levy-Type Model;1374
127.5;4 Examples;1377
127.5.1;4.1 Flat Plates;1377
127.5.2;4.2 Stiffened Plates;1378
127.6;5 Conclusions;1380
127.7;References;1381
128;Non-linear Dynamic Analysis for Collapse Probability Assessment of Historic Masonry Towers;1382
128.1;Abstract;1382
128.2;1 Introduction;1382
128.3;2 Masonry Tower Case Study;1383
128.4;3 Dynamic Tests and Model Updating;1384
128.4.1;3.1 Experimental Tests and Data Analysis;1384
128.4.2;3.2 Finite Element Model;1386
128.4.3;3.3 Genetic Algorithm Model Updating;1387
128.5;4 Probabilistic Framework;1388
128.5.1;4.1 Nonlinear Modelling of Masonry;1388
128.5.2;4.2 Nonlinear Time-History Analyses and Seismic Vulnerability;1389
128.6;5 Concluding Remarks;1391
128.7;References;1391
129;On the Influence of Drag Force Modeling in Long-Span Suspension Bridge Flutter Analysis;1393
129.1;Abstract;1393
129.2;1 Introduction;1393
129.3;2 Aerodynamic Actions and Flutter Analysis Methods;1394
129.3.1;2.1 Aerodynamic Action Modeling;1394
129.3.2;2.2 Finite Element Flutter Analysis;1395
129.3.3;2.3 Semi-analytic Continuum Model for Flutter Analysis with Drag-Induced Second-Order Effects;1395
129.4;3 Case Study and Results;1397
129.5;4 Final Remarks and Conclusions;1401
129.6;References;1401
130;Experimental Study on Large Amplitude Vibrations of a Circular Cylindrical Shell Subjected to Thermal Gradients;1403
130.1;Abstract;1403
130.2;1 Introduction;1403
130.3;2 Test Setup Description;1404
130.4;3 Experimental Results;1405
130.5;4 Conclusions;1409
130.6;References;1409
131;Vibrations of Circular Cylindrical Shells Under Random Excitation and Thermal Gradients;1411
131.1;Abstract;1411
131.2;1 Introduction;1411
131.3;2 Setup;1413
131.4;3 Test Procedure and Methods;1415
131.5;4 Results;1416
131.6;5 Conclusions;1420
131.7;References;1420
132;A Simple Model for Predicting the Nonlinear Dynamic Behavior of Elastic Systems Subjected to Friction;1421
132.1;Abstract;1421
132.2;1 Introduction;1422
132.3;2 Mechanical Model;1422
132.4;3 Sticking and Sliding;1424
132.4.1;3.1 The Sticking Phase;1424
132.4.2;3.2 The Sliding Phase;1425
132.5;4 Limit Cycles;1426
132.5.1;4.1 Sticking Limit Cycles;1426
132.5.2;4.2 Sliding Limit Cycles;1426
132.5.3;4.3 System Parameters and Long-Term Responses;1427
132.6;5 Application;1428
132.6.1;5.1 Simulation Cases;1428
132.7;6 Conclusions;1430
132.8;References;1431
133;Substructuring Using NNMs of Nonlinear Connecting Elements;1432
133.1;1 Introduction;1432
133.2;2 Theoretical Background;1433
133.2.1;2.1 Substructuring;1433
133.2.2;2.2 Nonlinear Normal Modes;1435
133.2.3;2.3 Modal Coupling Using NNMs;1437
133.3;3 Applications;1440
133.3.1;3.1 5-DOFs System with Hardening Spring;1440
133.3.2;3.2 2-DOFs System with Softening Spring;1443
133.4;4 Concluding Remarks;1445
133.5;References;1446
134;Design of a Membrane Structure Subjected to Blast Load;1447
134.1;1 Introduction;1447
134.2;2 Description of the Case Study;1448
134.3;3 Structures Subjected to External Blasts;1449
134.3.1;3.1 Technical Recommendations;1449
134.3.2;3.2 Design Procedures;1449
134.4;4 Determination of Loads;1450
134.4.1;4.1 Loads over Tent's Walls;1452
134.4.2;4.2 Load Cases;1455
134.5;5 Numerical Model;1457
134.5.1;5.1 Results;1458
134.6;6 Conclusions;1462
134.7;References;1463
135;Dynamic Substructuring with Time Variant Interface Due to Sliding Friction;1465
135.1;1 Introduction;1465
135.2;2 Theoretical Background;1466
135.2.1;2.1 Substructuring;1466
135.2.2;2.2 Solution Approach in Time Domain;1468
135.2.3;2.3 Time Dependent Frequency Response Function;1470
135.3;3 Beam on Beam System and Numerical Results;1471
135.3.1;3.1 Numerical Model;1471
135.3.2;3.2 Simplified Contact Algorithm;1473
135.3.3;3.3 Time Domain Results Using Primal and Dual Assembly;1475
135.3.4;3.4 Time Dependent FRF Using Dual Assembly;1478
135.4;4 Conclusions;1478
135.5;References;1479
136;Homogenization of a Heat Conduction Problem with a Total Flux Boundary Condition;1481
136.1;1 Introduction;1481
136.2;2 The Microscopic Problem;1482
136.2.1;2.1 Geometrical Setting;1482
136.2.2;2.2 Position of the Problem;1483
136.3;3 Time-Depending Unfolding Operator;1485
136.4;4 Homogenization;1487
136.5;References;1492
137;Experimental and Numerical Response Analysis of a Unilaterally Constrained SDOF System Under Harmonic Base Excitation;1494
137.1;Abstract;1494
137.2;1 Introduction;1494
137.3;2 Experimental Tests;1496
137.4;3 Numerical Model;1497
137.5;4 Results;1498
137.6;5 Conclusions and Future Developments;1501
137.7;References;1502
138;Optimal Sensors Placement for Damage Detection of Beam Structures;1504
138.1;1 Introduction;1504
138.2;2 Proposed Method;1505
138.2.1;2.1 Beam Formulation;1505
138.2.2;2.2 Optimal Sensors Placement;1508
138.3;3 Case Study;1511
138.4;4 Conclusions;1516
138.5;References;1517
139;Shake Table Testing of a Tuned Mass Damper Inerter (TMDI)-Equipped Structure and Nonlinear Dynamic Modeling Under Harmonic Excitations;1518
139.1;Abstract;1518
139.2;1 Introduction;1518
139.3;2 Physical Model, Shaking Table Setup, and Instrumentation;1519
139.4;3 Frequency Domain Experimental Response Characterization;1521
139.5;4 Nonlinear Numerical Modeling and Assessment;1522
139.6;5 Conclusions;1525
139.7;References;1526
140;An Appraisal of Modelling Strategies for Assessing Aeolian Vibrations of Transmission Lines;1528
140.1;1 Introduction;1528
140.2;2 The Energy Balance Method;1529
140.2.1;2.1 Wind Power Input;1530
140.2.2;2.2 Cable Self-damping;1530
140.2.3;2.3 Power Dissipation Due to Additional Dampers;1531
140.3;3 Dynamic Response of Overhead Power Lines;1533
140.3.1;3.1 Impedance Matrix;1533
140.3.2;3.2 Semi-analytical Procedure for the Evaluation of the Line Modal Properties;1535
140.4;4 Applications;1536
140.5;5 Conclusions;1539
140.6;References;1539
141;On the Modelling of the Hysteretic Behaviour of Wire Rope Isolators;1541
141.1;1 Introduction;1541
141.2;2 Black Box Approaches for WRIs;1542
141.3;3 Mechanical Model of WRIs;1543
141.3.1;3.1 Moment-Curvature Law for the Rope Cross-Section;1544
141.3.2;3.2 The Corotational Beam Element;1545
141.4;4 Numerical Applications;1546
141.5;5 Conclusions;1547
141.6;References;1547
142;Optical Flow Dynamic Measurements with High-Speed Camera on a Small-Scale Steel Frame Structure;1549
142.1;Abstract;1549
142.2;1 Introduction;1549
142.3;2 Particle Tracking Algorithm;1550
142.4;3 Experiments;1551
142.4.1;3.1 Experimental Setup;1551
142.4.2;3.2 Results;1554
142.5;4 Conclusions;1560
142.6;Acknowledgments;1560
142.7;References;1560
143;Stochastic Mechanics and Probability in Engineering;1562
144;Stochastic Seismic Assessment of Bridge Networks by Matrix Based System Reliability Method;1563
144.1;Abstract;1563
144.2;1 Introduction;1563
144.3;2 MSR-Based Prioritization Strategy;1564
144.3.1;2.1 Formulation of System Reliability;1564
144.3.2;2.2 Construction of the Probability Vector;1565
144.3.3;2.3 Construction of the Probability Event Vector;1565
144.4;3 Reliability of the Network;1566
144.5;4 Case Study;1566
144.5.1;4.1 Problem Statement;1566
144.5.2;4.2 Probability of Disconnection Between Cities;1568
144.5.3;4.3 Probability of Disconnection of Paths Under Seismic Risk;1569
144.6;5 Conclusions;1569
144.7;Acknowledgments;1569
144.8;References;1569
145;Influence of User-Defined Parameters Using Stochastic Subspace Identification (SSI);1571
145.1;Abstract;1571
145.2;1 Introduction;1571
145.3;2 Data-Driven Stochastic Subspace Identification Method;1573
145.4;3 Case Study: Reinforced Concrete Building in Alcamo;1576
145.4.1;3.1 Data Acquisition and Measurement Setup;1576
145.4.2;3.2 Identification of the Modal Parameters;1577
145.4.3;3.3 Influence of the Number of Block Rows i in Hankel Matrix and of the Length of the Signal on the SSI Method;1578
145.4.4;3.4 Comparison Between SSI Method and EFDD Method;1580
145.5;4 Conclusions;1583
145.6;Acknowledgment;1584
145.7;References;1584
146;Analysis of Truss-Like Cracked Structures with Uncertain-but-Bounded Depths;1587
146.1;Abstract;1587
146.2;1 Introduction;1587
146.3;2 Formulation of the Problem;1588
146.3.1;2.1 Damaged Member with Uncertain-but-Bounded Crack Depth;1588
146.3.2;2.2 Governing Equation for a Truss Structure with Cracked Members;1589
146.4;3 Response Bounds;1590
146.5;4 Numerical Application;1592
146.6;5 Conclusions;1593
146.7;References;1594
147;Vibration Based Bayesian Inference for Finite Element Model Parameters Estimation and Damage Detection;1595
147.1;1 Introduction;1596
147.2;2 Bayesian Inference for the Estimation of FE Model Parameters Using Noisy Modal Data;1597
147.2.1;2.1 General Formulation of the Probabilistic Model;1597
147.2.2;2.2 Bayesian Updating Framework Using Noisy Modal Data;1597
147.2.3;2.3 Likelihood Function;1598
147.2.4;2.4 Prior Distribution;1599
147.2.5;2.5 Posterior Distribution;1600
147.3;3 Numerical Example: Damage Detection on a Cable Stayed Footbridge;1601
147.3.1;3.1 Numerical Model, Ambient Vibration Tests and Bayesian Updating of the Cable Stayed Footbridge;1601
147.3.2;3.2 Uncertainty Analysis of System Identification Results Obtained for the Cable Stayed Footbridge;1603
147.3.3;3.3 Effects of Cable Damage on the Eigenproperties;1604
147.3.4;3.4 Bayesian Damage Detection;1607
147.4;4 Conclusion;1608
147.5;References;1609
148;An Innovative Ambient Identification Method;1612
148.1;Abstract;1612
148.2;1 Introduction;1612
148.3;2 Identification Algorithm;1614
148.4;3 Numerical Analysis on a 3DOF System;1620
148.5;4 Conclusions;1626
148.6;References;1627
149;Speeding up the Stochastic Linearisation for Systems Controlled by Non-linear Passive Devices;1629
149.1;1 Introduction;1630
149.2;2 Stochastic Linearisation for Passive Control Devices;1631
149.2.1;2.1 System Controlled with Fluid Viscous Dampers;1632
149.2.2;2.2 System Controlled by Multi-NES;1633
149.2.3;2.3 Systems Controlled by Multiple TLCDs;1634
149.3;3 Analytical Evaluation of Response Statistics;1635
149.4;4 Numerical Applications;1640
149.5;5 Conclusions;1643
149.6;References;1646
150;Comparison of Surrogate Models for Handling Uncertainties in SHM of Historic Buildings;1649
150.1;1 Introduction;1649
150.2;2 Theoretical Background: Surrogate Modelling;1650
150.2.1;2.1 Response Surface Method (RSM);1650
150.2.2;2.2 Kriging Model;1651
150.2.3;2.3 Random Sampling High-Dimensional Model Representation (RS-HDMR);1651
150.3;3 Surrogate-Based Continuous Assessment of Historic Structures;1652
150.4;4 Validation Case Study and Discussion;1653
150.4.1;4.1 Finite Element Modelling;1654
150.4.2;4.2 Comparison of Surrogate Models;1655
150.4.3;4.3 Surrogate-Based Continuous Structural Assessment of the Sciri Tower;1658
150.5;5 Conclusions;1660
150.6;References;1660
151;Is It True that the Higher the Number of Plies is, the Safer is a Brittle Laminate?;1662
151.1;Abstract;1662
151.2;1 Introduction;1662
151.3;2 Probabilistic Models of the Strength;1664
151.4;3 Failure Probability of Brittle Laminates;1665
151.4.1;3.1 Case Studies;1665
151.4.2;3.2 “Failure Modes” Approach;1666
151.4.3;3.3 Materials with Volume Size Effect (VSE);1666
151.4.4;3.4 Materials with Area Size Effect (ASE);1668
151.4.5;3.5 Materials with no Size Effect (NSE);1671
151.5;4 Conclusions;1672
151.6;References;1672
152;Stress-Driven Approach for Stochastic Analysis of Noisy Nonlocal Beam;1674
152.1;1 Introduction;1674
152.2;2 Nonlocal Models in Bending Problem;1675
152.2.1;2.1 Eringen's Model;1675
152.2.2;2.2 Stress-Driven Formulation;1676
152.3;3 Bending Vibrations of Beam with Stress-Driven Nonlocality;1678
152.3.1;3.1 Free Vibrations of Undamped Nonlocal Beam;1680
152.3.2;3.2 Forced Vibrations of Damped Nonlocal Beam;1682
152.4;4 Stochastic Response of Nonlocal Damped Beam;1683
152.4.1;4.1 Steady-State Response;1684
152.5;5 Numerical Applications;1685
152.6;6 Conclusions;1688
152.7;References;1688
153;Laplace’s Method of Integration in the Path Integral Approach for the Probabilistic Response of Nonlinear Systems;1691
153.1;Abstract;1691
153.2;1 Introduction;1691
153.3;2 The Laplace’s Method of Integration;1692
153.4;3 Application of the Laplace’s Method for the Pathi Integral Approach;1693
153.5;4 Numerical Applications;1696
153.6;5 Conclusions;1697
153.7;References;1698
154;Estimation of Masonry Texture and Mechanical Characteristics by Means of Thermographic Images;1700
154.1;1 Introduction;1700
154.2;2 Thermography;1701
154.3;3 Homogenization;1702
154.4;4 Texture Identification;1703
154.5;5 Effect of Uncertainties;1704
154.6;6 Conclusions;1705
154.7;References;1705
155;Fractional Viscoelasticity Under Combined Stress and Temperature Variations;1707
155.1;1 Introduction;1707
155.2;2 Preliminary Concepts and Definitions;1708
155.3;3 Step Material Parameters Variation with Temperature;1710
155.4;4 Numerical Applications;1713
155.4.1;4.1 Analysis with Deterministic History of Stress;1713
155.4.2;4.2 Analysis with Stochastic History of Stress;1717
155.5;5 Conclusions;1719
155.6;References;1719
156;Explicit Assessment of the Forced Vibration of Multi-cracked Beams with Uncertain Damage Intensity;1722
156.1;Abstract;1722
156.2;1 Introduction;1722
156.3;2 The Governing Equations of the Forced Vibration of Multi-cracked Beams;1724
156.4;3 Explicit Approximated Approach;1726
156.5;4 Applications;1729
156.6;5 Conclusions;1731
156.7;Acknowledgement;1732
156.8;References;1732
157;Recent Advances and Challenges in Structural Mechanics and Engineering;1733
158;Koiter Method and Solid Shell Finite Elements for Postbuckling Optimisation of Variable Angle Tow Composite Structures;1734
158.1;1 Introduction;1734
158.2;2 Optimisation of a Composite VAT Wingbox;1736
158.2.1;2.1 VAT Wingbox;1737
158.2.2;2.2 Optimisation Strategy;1738
158.2.3;2.3 Optimisation Algorithms;1739
158.3;3 Numerical Results;1739
158.3.1;3.1 Optimisation;1739
158.4;4 Conclusions;1743
158.5;References;1743
159;Equilibrium of the von Mises Truss in Nonlinear Elasticity;1746
159.1;1 Introduction;1746
159.2;2 Preliminary Notions;1747
159.3;3 Formulation of the Boundary-Value Problem;1749
159.4;4 Global Equilibrium and Stability;1751
159.5;5 Equilibrium Paths for the Case of Mooney-Rivlin Material;1752
159.6;6 Conclusions;1754
159.7;References;1755
160;Modeling of Carbon and Polyester Elastomeric Isolators in Unbounded Configuration by Using an Efficient Uniaxial Hysteretic Model;1756
160.1;Abstract;1756
160.2;1 Introduction;1756
160.3;2 Experimental Program;1757
160.3.1;2.1 Test Protocols;1758
160.3.2;2.2 Experimental Results;1760
160.4;3 Numerical Model;1760
160.4.1;3.1 Parameter Calibration;1762
160.4.2;3.2 Comparison;1763
160.5;4 Conclusions;1764
160.6;References;1765
161;Energetic and Geometric Criteria for Defining Shear-Deformable Beam Models;1766
161.1;1 Introduction;1766
161.2;2 Overview of Saint Venant's Solid Model;1768
161.3;3 Derivation of the Shear-Deformable Beam Model;1769
161.3.1;3.1 Energetic Derivation of the 1D Beam Model;1770
161.3.2;3.2 Geometric Derivation of the 1D Beam Model;1771
161.3.3;3.3 Equivalence of the Energetic and Geometric Approach;1774
161.4;4 Conclusions;1774
161.5;References;1775
162;Use, Effectiveness and Long Term Reliability of MR Dampers for Seismic Protection of Framed Structures;1776
162.1;Abstract;1776
162.2;1 Introduction;1776
162.3;2 Experimental Issues in Testing a SA MR Control System;1778
162.4;3 Effectiveness of a SA MR Control System Through an Experimental Activity;1780
162.4.1;3.1 Experimental Activity;1780
162.4.2;3.2 Control Logics;1781
162.4.3;3.3 Main Results;1782
162.5;4 Ageing Effects on Long Term Reliability of MR Dampers;1783
162.6;5 Conclusions;1785
162.7;References;1786
163;Curved and Twisted Beam Models for Aeroelastic Analysis of Wind Turbine Blades in Large Displacement;1788
163.1;Abstract;1788
163.2;1 Introduction;1788
163.3;2 Blades Modeling: Approaches Overview;1789
163.4;3 Beam-Like Structures: Mechanical Modeling;1790
163.4.1;3.1 Beam-Like Model 1 (BLM1);1790
163.4.2;3.2 Beam-Like Model 2 (BLM2);1794
163.4.3;3.3 Warping Displacements in BLM2;1797
163.5;4 Examples and Results;1798
163.6;5 Conclusions;1799
163.7;References;1799
164;The Non-smooth Dynamics of Multiple Leaf Masonry Walls of the Arquata Del Tronto Fortress;1801
164.1;Abstract;1801
164.2;1 Introduction;1801
164.3;2 Historical Developments of the Medieval Fortress;1803
164.3.1;2.1 Damage of the Arquata del Tronto Fortress After the Central Italy Earthquakes of 2016;1805
164.4;3 The Non-Smooth Contact Dynamics Method;1805
164.5;4 Numerical Results;1808
164.6;5 Conclusions;1809
164.7;References;1809
165;A Simplified Beam-Like Model for the Dynamic Analysis of Multi-storey Buildings;1811
165.1;Abstract;1811
165.2;1 Introduction;1811
165.3;2 The Considered Beam-Like Model;1812
165.3.1;2.1 The Rayleigh Ritz Discretization of the Non-uniform Equivalent Beam;1813
165.4;3 Validation of the Proposed Model;1815
165.5;4 Conclusions;1820
165.6;References;1820
166;Dynamic Identification and Damage Detection on Masonry Buildings Using Shaking Table Tests;1822
166.1;1 Introduction;1823
166.2;2 Models Description;1824
166.3;3 Experimental Tests and Sensors Layout;1825
166.4;4 Estimation of Modal Parameters;1827
166.4.1;4.1 Unreinforced Masonry Building Models;1827
166.4.2;4.2 Confined Masonry Building Models;1831
166.5;5 Damage Detection;1833
166.5.1;5.1 Unreinforced Masonry Building Models;1834
166.5.2;5.2 Confined Masonry Building Models;1835
166.6;6 Conclusion;1837
166.7;References;1838
167;Effects of In- and Out-of-Plane Nonlinear Modelling of Masonry Infills on the Seismic Response of R.C. Framed Buildings;1841
167.1;Abstract;1841
167.2;1 Introduction;1841
167.3;2 Layout and Simulated Design of the Case Study;1843
167.4;3 Layout and Nonlinear Modelling of Masonry Infills;1846
167.5;4 Numerical Results;1850
167.6;5 Conclusions;1858
167.7;Acknowledgements;1858
167.8;References;1858
168;Proposal of Design Tools for a Shear Link Damper in Seismic Control of Frame Structures;1860
168.1;Abstract;1860
168.2;1 Introduction;1860
168.3;2 A Design Tool for Structures Equipped with Hysteretic Dampers;1862
168.4;3 Preliminary SL Sizing: Proposal of Design Charts;1864
168.5;4 Evaluation of SL Mechanical Properties;1866
168.6;5 Conclusions;1867
168.7;References;1867
169;Hydrothermal Ageing of Natural Fibre Polymer Composites;1870
170;Experimentation on Lime Mortars Reinforced with Jute Fibres: Mixture Workability and Mechanical Strengths;1871
170.1;Abstract;1871
170.2;1 Introduction;1871
170.3;2 The Experimental Campaign;1872
170.3.1;2.1 Targets;1872
170.3.2;2.2 Materials;1873
170.3.3;2.3 Test Equipment;1874
170.4;3 The Obtained Results;1875
170.4.1;3.1 Water Absorption of Jute Fibres;1875
170.4.2;3.2 Maximum Water Percentage in the Lime Mortar;1875
170.4.3;3.3 Water Percentage in the Fibre-Reinforced Mixture;1875
170.4.4;3.4 Optimal Percentage of Fibres;1876
170.4.5;3.5 Mechanical Tests;1878
170.5;4 Conclusions;1880
170.6;Acknowledgements;1881
170.7;References;1881
171;Masonry Constructions: from Material to Structures, Modelling and Analysis Approaches;1883
172;Micromodels for the In-Plane Failure Analysis of Masonry Walls with Friction: Limit Analysis and DEM-FEM/DEM Approaches;1884
172.1;1 Introduction;1884
172.2;2 Adopted Micromodels;1886
172.2.1;2.1 Rigid Block Model for Limit Analysis;1886
172.2.2;2.2 DEM and FEM/DEM;1888
172.3;3 Numerical Results;1889
172.4;4 Final Remarks;1893
172.5;References;1894
173;Roman Masonry Stairways. Geometry, Construction and Stability;1897
173.1;Abstract;1897
173.2;1 Introduction;1898
173.3;2 The Theoretical Framework;1898
173.3.1;2.1 Assumption on the Material;1898
173.3.2;2.2 An Equilibrium Model;1899
173.4;3 Structural Analysis. Application to the Case Study;1901
173.4.1;3.1 Geometry and Constructive Features;1902
173.4.2;3.2 The Equilibrium Solution;1903
173.5;4 Conclusions;1908
173.6;Acknowledgments;1909
173.7;References;1909
174;On Unilateral Contact Between Rigid Masonry Blocks;1911
174.1;Abstract;1911
174.2;1 Introduction;1911
174.3;2 Variational Formulations;1913
174.3.1;2.1 Definitions;1913
174.3.2;2.2 Primal Formulation;1914
174.3.3;2.3 Dual Boundary Formulation;1915
174.4;3 Discretization;1916
174.4.1;3.1 Primal LP Problem;1916
174.4.2;3.2 Dual LP Problem;1917
174.5;4 Conclusions;1917
174.6;References;1918
175;Thrust Membrane Analysis of the Domes of the Baia Thermal Baths;1919
175.1;1 Introduction;1919
175.2;2 Extension of the TNA to Include Membrane Elements;1920
175.2.1;2.1 Branch Elements;1921
175.2.2;2.2 Triangular Membrane Element;1922
175.3;3 The Domes of the Baia Thermal Baths: The Temple of Mercury;1923
175.3.1;3.1 Geometric, Batigraphic and Photogrammetric Survey of the Dome of Mercury;1924
175.3.2;3.2 Thrust Membrane Analysis of the Dome of Mercury;1925
175.4;4 Conclusions;1927
175.5;References;1928
176;Collapse of Non-symmetric Masonry Arches with Coulomb Friction: Monasterio’s Approach and Equilibrium Analysis;1929
176.1;Abstract;1929
176.2;1 Introduction;1929
176.3;2 Monasterio’s Approach;1930
176.3.1;2.1 The Pure Sliding Collapse Mode;1931
176.3.2;2.2 The Rotational and Mixed Collapse Modes;1932
176.4;3 Lower Bound Approach for Non-symmetric Arches;1934
176.5;4 A Comparison Between Kinematic and Static Approaches;1936
176.6;5 Conclusions;1938
176.7;Acknowledgments;1938
176.8;References;1938
177;Corotational Beam-Interface Model for Stability Analysis of Reinforced Masonry Walls;1940
177.1;1 Introduction;1940
177.2;2 Beam-Interface Micromechanical 2D Modeling;1942
177.3;3 Interface Element Formulation;1944
177.3.1;3.1 Corotational Approach;1945
177.3.2;3.2 Material and Generalized Constitutive Relationship;1947
177.4;4 Numerical Applications;1949
177.5;5 Conclusions;1953
177.6;References;1953
178;Metamodels in Computational Mechanics for Bayesian FEM Updating of Ancient High-Rise Masonry Structures;1955
178.1;Abstract;1955
178.2;1 Introduction;1956
178.3;2 The Bayesian Paradigm;1957
178.4;3 The Metamodeling Concept;1957
178.5;4 The Computational Environment;1958
178.5.1;4.1 The Code_Aster Solver and the Salome_Meca Platform;1959
178.5.2;4.2 The OpenTURNS Environment;1960
178.5.3;4.3 The Python Libraries and Wrapping;1960
178.6;5 The Updating Procedure;1960
178.6.1;5.1 The Case Study;1960
178.6.2;5.2 The FE-Model;1961
178.6.3;5.3 The Results Sampling;1962
178.6.4;5.4 The Metamodel Creation;1964
178.6.5;5.5 The Bayesian Model Updating;1966
178.7;6 Conclusions;1970
178.8;References;1970
179;Settlement Induced Crack Pattern Prediction Through the Jointed Masonry Model;1972
179.1;1 Introduction;1973
179.2;2 Constitutive Model;1974
179.3;3 Benchmark Case-Studies;1976
179.3.1;3.1 Dry Masonry Plane Façade;1976
179.3.2;3.2 Dry Masonry Three-Dimensional Masonry Building;1977
179.4;4 Analysis of a Real Case-Study;1978
179.5;5 Conclusions;1980
179.6;References;1980
180;Impacts Analysis in the Rocking of Masonry Circular Arches;1982
180.1;Abstract;1982
180.2;1 Introduction;1982
180.3;2 The Circular Masonry Arch and the Valuation of the Incipient Rocking Acceleration;1984
180.4;3 First Stage of Rocking;1989
180.5;4 The Impact;1992
180.5.1;4.1 An Assessment on the Controversial Commonly Assumed Model;1992
180.5.2;4.2 The Alternative Model of the Impact;1994
180.6;5 The Forced Motion;1998
180.7;6 A Numerical Investigation;2002
180.8;7 Conclusions;2004
180.9;References;2004
181;Equivalent Frame Modelling of an Unreinforced Masonry Building in Finite Element Environment;2007
181.1;Abstract;2007
181.2;1 Introduction;2008
181.2.1;1.1 Equivalent Frame Modelling of Unreinforced Masonry Walls;2008
181.2.2;1.2 EF Modelling State of Art;2010
181.3;2 The Case Study;2010
181.3.1;2.1 Creation of the Equivalent Frame Model;2012
181.3.2;2.2 The Equivalent Frame Model in FEM Environment;2013
181.3.3;2.3 Considerations on the EF Modelling Method;2015
181.4;3 Results of Overall Analyses;2017
181.4.1;3.1 The Modal Analysis;2017
181.4.2;3.2 The Pushover Analysis;2018
181.5;4 Discussion of Results;2018
181.6;5 Conclusions;2020
181.7;References;2021
182;A Hysteretic Model with Damage Based on Bouc-Wen Formulation;2023
182.1;1 Introduction;2024
182.2;2 Bouc-Wen Hysteresis Model with Damage;2025
182.3;3 Force-Dased Beam Finite Element;2027
182.4;4 Analyses;2029
182.5;5 Conclusions;2031
182.6;References;2032
183;Frictional Behaviour of Masonry Interfaces: Experimental Investigation on Two Dry-Jointed Tuff Blocks;2033
183.1;1 Introduction;2033
183.2;2 Testing Procedure;2035
183.2.1;2.1 Test Set-Up;2036
183.2.2;2.2 Testing Program;2037
183.3;3 Experimental Results;2038
183.3.1;3.1 Pure Shear;2038
183.3.2;3.2 Torsion-Shear Interaction;2040
183.3.3;3.3 Torsion-Shear-Bending Interaction;2042
183.4;4 Comparison with Standard Numerical Model;2043
183.5;5 Discussion;2045
183.6;6 Conclusions;2046
183.7;References;2047
184;Analysis of Masonry Pointed Arches on Moving Supports: A Numeric Predictive Model and Experimental Evaluations;2049
184.1;Abstract;2049
184.2;1 Introduction;2049
184.3;2 Numerical Procedure;2051
184.3.1;2.1 Searching for the Three Hinge Positions;2052
184.3.2;2.2 Kinematic and Equilibrium Tests;2053
184.3.3;2.3 Limit Displacement of the Moving Support;2055
184.4;3 Experimental Tests vs. Numerical Predictions;2056
184.5;4 Comparison with Circular Arches;2065
184.6;5 Conclusions;2067
184.7;Acknowledgements;2068
184.8;References;2068
185;The Role of Shape Irregularities on the Lateral Loads Bearing Capacity of Circular Masonry Arches;2070
185.1;1 Introduction;2070
185.2;2 Geometrical Modelling of the Masonry Arch with Irregular Shape;2072
185.2.1;2.1 Work Hypotheses;2072
185.2.2;2.2 The Random Shape of the Polycentric Arch;2072
185.3;3 Limit Equilibrium Approach;2075
185.4;4 Analysis of the Results;2077
185.5;5 Conclusion;2080
185.6;References;2081
186;Static Analysis of a Double-Cap Masonry Dome;2083
186.1;1 Introduction;2083
186.2;2 Brief Detail About the Dome of St. Januarius;2085
186.3;3 Preliminary Analysis Based on Graphical Statics;2086
186.4;4 Membrane Approach to the Equilibrium;2088
186.4.1;4.1 Sketch of the Algorithm;2089
186.5;5 Rigid Block Limit Analysis;2090
186.6;6 Conclusions;2092
186.7;References;2093
187;Equilibrium of Masonry Sail Vaults: The Case Study of a Subterranean Vault by Antonio da Sangallo the Elder in the “Fortezza Vecchia” in Livorno;2095
187.1;Abstract;2095
187.2;1 Introduction;2095
187.3;2 Analytical Representation of the Vault Intrados Surface;2097
187.4;3 Statically Admissible Stress Fields for the Masonry Sail Vault;2099
187.4.1;3.1 Statically Admissible Stress Fields that Maximize the Geometrical Safety Factor;2100
187.4.2;3.2 Statically Admissible Stress Fields that Maximize the Mechanical Safety Factor;2102
187.4.3;3.3 Evaluating the Thrust on the Lateral Walls;2102
187.5;4 Conclusions;2103
187.6;Acknowledgments;2103
187.7;References;2104
188;Experimental Behaviour of Historic Masonry Walls Under Compression and Shear Loading;2105
188.1;Abstract;2105
188.2;1 Introduction;2105
188.3;2 Results of Experimental Shear Tests on Brickwork Walls;2106
188.4;3 Experimental Shear Tests on Strengthened Walls;2109
188.4.1;3.1 Strengthened Wall with Diagonal GFRP Strips;2109
188.4.2;3.2 Strengthened Wall with GFRP Strips Parallel to Shear Load;2110
188.5;4 Discussion on the Strengthening with GFRP Strip;2112
188.6;5 Conclusions;2112
188.7;Acknowledgement;2113
188.8;References;2113
189;Experimental Tests and Numerical Modelling of Traffic-Induced Vibrations;2115
189.1;Abstract;2115
189.2;1 Introduction;2115
189.3;2 Data Acquisition Phase;2117
189.3.1;2.1 Data Acquisition Equipment;2117
189.3.2;2.2 Historical Buildings Under Monitoring;2118
189.4;3 Vibration Data Processing;2120
189.4.1;3.1 Event Extraction;2120
189.4.2;3.2 Event Filtering and Analysis;2121
189.5;4 Results;2122
189.6;5 Conclusions;2123
189.7;References;2124
190;Upper Bound Limit Analysis of Quasi-Periodic Masonry by Means of Discontinuity Layout Optimization (DLO);2125
190.1;1 Introduction;2125
190.2;2 Discontinuity Layout Optimization;2126
190.3;3 Model for Masonry;2128
190.4;4 Results;2129
190.4.1;4.1 Periodic Masonry;2129
190.4.2;4.2 Quasi-periodic Masonry;2130
190.4.3;4.3 Chaotic Masonry;2130
190.5;5 Conclusions;2133
190.6;References;2133
191;An Experimental Study on the Effectiveness of CFRP Reinforcements Applied to Curved Masonry Pillars;2135
191.1;Abstract;2135
191.2;1 Introduction;2135
191.3;2 Experimental Program, Specimens and Materials;2136
191.4;3 Test Setup;2139
191.5;4 Experimental Results and Comparisons;2140
191.6;5 Conclusions;2146
191.7;References;2147
192;Numerical Analysis of the Bond Behavior of FRP Applied to Masonry Curved Substrates with Anchor Spikes;2150
192.1;Abstract;2150
192.2;1 Introduction;2150
192.3;2 Spring-Model Approach;2151
192.4;3 Tri-Dimensional Micro-modelling FE Approach;2154
192.5;4 Accounted Cases for the Validation of Modeling Approaches;2155
192.6;5 Numerical Analyses and Results: Spring-Model;2157
192.7;6 Numerical Analyses and Results: FE-Model;2157
192.8;7 Conclusions;2159
192.9;References;2160
193;Statics of Buttressed Masonry Arches in Light of Traditional Design Rules;2163
193.1;Abstract;2163
193.2;1 Introduction;2163
193.3;2 Design Rules for Masonry Arches;2164
193.3.1;2.1 First Generation of Empirical Rules: From Leonardo’s Geometrical Construction to the Limitations in Terms of T/R;2165
193.3.2;2.2 Second Generation of Empirical Rules: Minimum Arch Thickness t Provided in Terms Span L;2166
193.3.3;2.3 Third Generation of Empirical Rules: The Rediscovery of the Simplified Limitations in Terms of t/R;2167
193.3.4;2.4 Comparison Among the Three Generations of Design Rules for Arch Thickness;2167
193.4;3 Design Rules for Masonry Buttresses;2169
193.4.1;3.1 The Ancient Rules of Alberti and the Geometrical Method of Derand;2170
193.4.2;3.2 The Equilibrium Based Methods of Belidor and Mascheroni;2171
193.4.3;3.3 Handbook Rules of 19th Century;2173
193.4.4;3.4 Comparison Among the Design Rules for Buttress;2173
193.5;4 Conclusions;2175
193.6;References;2176
194;Theoretical, Numerical and Physical Modelling in Geomechanics;2178
195;Developing and Testing Multiphase MPM Approaches for the Stability of Dams and River Embankments;2179
195.1;Abstract;2179
195.2;1 Introduction;2179
195.3;2 Multiphase Material Point Method;2181
195.3.1;2.1 Two-Phase Double-Point Formulation;2182
195.3.2;2.2 Two-Phase Single-Point Formulation with Suction Effect;2183
195.4;3 Simulation of Rapid Drowdown;2185
195.4.1;3.1 Setup of the Numerical Model;2187
195.4.2;3.2 Results;2188
195.5;4 Simulation of Infiltration Problem;2190
195.5.1;4.1 Setup of the Numerical Model;2190
195.5.2;4.2 Results;2191
195.6;5 Conclusions;2193
195.7;References;2193
196;Author Index;2196