Byers | How Mathematicians Think | Buch | 978-0-691-14599-0 | sack.de

Buch, Englisch, 424 Seiten, Format (B × H): 156 mm x 236 mm, Gewicht: 605 g

Byers

How Mathematicians Think

Using Ambiguity, Contradiction, and Paradox to Create Mathematics
Erscheinungsjahr 2010
ISBN: 978-0-691-14599-0
Verlag: Princeton University Press

Using Ambiguity, Contradiction, and Paradox to Create Mathematics

Buch, Englisch, 424 Seiten, Format (B × H): 156 mm x 236 mm, Gewicht: 605 g

ISBN: 978-0-691-14599-0
Verlag: Princeton University Press


To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically--even algorithmically--from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results. Nonlogical qualities, William Byers shows, play an essential role in mathematics. Ambiguities, contradictions, and paradoxes can arise when ideas developed in different contexts come into contact. Uncertainties and conflicts do not impede but rather spur the development of mathematics. Creativity often means bringing apparently incompatible perspectives together as complementary aspects of a new, more subtle theory. The secret of mathematics is not to be found only in its logical structure.The creative dimensions of mathematical work have great implications for our notions of mathematical and scientific truth, and How Mathematicians Think provides a novel approach to many fundamental questions. Is mathematics objectively true? Is it discovered or invented? And is there such a thing as a "final" scientific theory?Ultimately, How Mathematicians Think shows that the nature of mathematical thinking can teach us a great deal about the human condition itself.

Byers How Mathematicians Think jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Acknowledgments vii

INTRODUCTION: Turning on the Light 1

SECTION I: THE LIGHT OF AMBIGUITY 21

CHAPTER 1: Ambiguity in Mathematics 25

CHAPTER 2: The Contradictory in Mathematics 80

CHAPTER 3: Paradoxes and Mathematics: Infinity and the Real Numbers 110

CHAPTER 4: More Paradoxes of Infinity: Geometry, Cardinality, and Beyond 146

SECTION II: THE LIGHT AS IDEA 189

CHAPTER 5: The Idea as an Organizing Principle 193

CHAPTER 6: Ideas, Logic, and Paradox 253

CHAPTER 7: Great Ideas 284

SECTION III: THE LIGHT AND THE EYE OF THE BEHOLDER 323

CHAPTER 8: The Truth of Mathematics 327

CHAPTER 9: Conclusion: Is Mathematics Algorithmic or Creative? 368

Notes 389

Bibliography 399

Index 407


Byers, William
William Byers is professor of mathematics at Concordia University in Montreal. He has published widely in mathematics journals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.