Butt / Graf / Kappl | Physics and Chemistry of Interfaces | Buch | 978-3-527-41405-5 | sack.de

Buch, Englisch, 480 Seiten, Format (B × H): 168 mm x 243 mm, Gewicht: 902 g

Butt / Graf / Kappl

Physics and Chemistry of Interfaces

Buch, Englisch, 480 Seiten, Format (B × H): 168 mm x 243 mm, Gewicht: 902 g

ISBN: 978-3-527-41405-5
Verlag: Wiley-VCH GmbH


Für die vierte Auflage wurde das Werk vollständig aktualisiert und überarbeitet. Diese Auflage enthält neue Themen wie Oberflächenspektroskopie, Nichtgleichgewichtseffekte und innovative Beschichtungsmethoden, setzt gleichzeitig jedoch auf das bewährte Konzept, Oberflächenphänomene detailliert und leicht verständlich zu beschreiben.
Butt / Graf / Kappl Physics and Chemistry of Interfaces jetzt bestellen!

Weitere Infos & Material


1. Introduction

 

2. Liquid Surfaces

2.1 Microscopic Picture of a Liquid Surface

2.2 Surface Tension

2.3 Equation of Young and Laplace

2.3.1 Curved Liquid Surfaces

2.3.2 Derivation of Young-Laplace Equation

2.3.3 Applying the Young-Laplace Equation

2.4 Techniques to Measure Surface Tension

2.5 Kelvin Equation

2.6 Capillary Condensation

2.7 Nucleation Theory

2.8 Summary

2.9 Exercises

 

3. Thermodynamics of Interfaces

3.1 Thermodynamic Functions for Bulk Systems

3.2 Surface Excess

3.3 Thermodynamic Relations for Systems with an Interface

3.3.1 Internal Energy and Helmholtz Energy

3.3.2 Equilibrium Conditions

3.3.3 Location of Interface

3.3.4 Gibbs Energy and Enthalpy

3.3.5 Interfacial Excess Energies

3.4 Pure Liquids

3.5 Gibbs Adsorption Isotherm

3.5.1 Derivation

3.5.2 System of Two Components

3.5.3 Experimental Aspects

3.5.4 Marangoni Effect

3.6 Summary

3.7 Exercises

 

4. Charged Interfaces and the Electric Double Layer

4.1 Introduction

4.2 Poisson-Boltzmann Theory of Diffuse Double Layer

4.2.1 Poisson-Boltzmann Equation

4.2.2 Planar Surfaces

4.2.3 The Full One-Dimensional Case

4.2.4 The Electric Double Layer around a Sphere

4.2.5 Grahame Equation

4.2.6 Capacitance of Diffuse Electric Double Layer

4.3 Beyond Poisson-Boltzmann Theory

4.3.1 Limitations of Poisson-Boltzmann Theory

4.3.2 Stern Layer

4.4 Gibbs Energy of Electric Double Layer

4.5 Electrocapillarity

4.5.1 Theory

4.5.2 Measurement of Electrocapillarity

4.6 Examples of Charged Surfaces

4.7 Measuring Surface Charge Densities

4.7.1 Potentiometric Colloid Titration

4.7.2 Capacitances

4.8 Electrokinetic Phenomena: the Zeta Potential

4.8.1 Navier-Stokes Equation

4.8.2 Electro-Osmosis and Streaming Potential

4.8.3 Electrophoresis and Sedimentation Potential

4.9 Types of Potential

4.10 Summary

4.11 Exercises

 

5. Surface Forces

5.1 Van der Waals Forces between Molecules

5.2 Van der Waals Force between Macroscopic Solids

5.2.1 Microscopic Approach

5.2.2 Macroscopic Calculation - Lifshitz Theory

5.2.3 Retarded Van der Waals Forces

5.2.4 Surface Energy and the Hamaker Constant

5.3 Concepts for the Description of Surface Forces

5.3.1 The Derjaguin Approximation

5.3.2 Disjoining Pressure

5.4 Measurement of Surface Forces

5.5 Electrostatic Double-Layer Force

5.5.1 Electrostatic Interaction between Two Identical Surfaces

5.5.2 DLVO Theory

5.6 Beyond DLVO Theory

5.6.1 Solvation Force and Confined Liquids

5.6.2 Non-DLVO Forces in Aqueous Medium

5.7 Steric and Depletion Interaction

5.7.1 Properties of Polymers

5.7.2 Force between Polymer-Coated Surfaces

5.7.3 Depletion Forces

5.8 Spherical Particles in Contact

5.9 Summary

5.10 Exercises

 

6. Contact Angle Phenomena and Wetting

6.1 Young's Equation

6.1.1 Contact Angle

6.1.2 Derivation

6.1.3 Line Tension

6.1.4 Complete Wetting and Wetting Transitions

6.1.5 Theoretical Aspects of Contact Angle Phenomena

6.2 Important Wetting Geometries

6.2.1 Capillary Rise

6.2.2 Particles at Interfaces

6.2.3 Network of Fibers

6.3 Measurement of Contact Angles

6.3.1 Experimental Methods

6.3.2 Hysteresis in Contact Angle Measurements

6.3.3 Surface Roughness and Heterogeneity

6.3.4 Superhydrophobic Surfaces

6.4 Dynamics of Wetting and Dewetting

6.4.1 Spontaneous Spreading

6.4.2 Dynamic Contact Angle

6.4.3 Coating and Dewetting

6.5 Applications

6.5.1 Flotation

6.5.2 Detergency

6.5.3 Microfluidics

6.5.4 Electrowetting

6.6 Thick Films: Spreading of One Liquid on Another

6.7 Summary

6.8 Exercises

 

7. Solid Surfaces

7.1 Introduction

7.2 Description of Crystalline Surfaces

7.2.1 Substrate Structure

7.2.2 Surface Relaxation and Reconstruction

7.2.3 Description of Adsorbate Structures

7.3 Preparation of Clean Surfaces

7.3.1 Thermal Treatment

7.3.2 Plasma or Sputter Cleaning

7.3.3 Cleavage

7.3.4 Deposition of Thin Films

7.4 Thermodynamics of Solid Surfaces

7.4.1 Surface Energy, Surface Tension, and Surface Stress

7.4.2 Determining Surface Energy

7.4.3 Surface Steps and Defects

7.5 Surface Diffusion

7.5.1 Theoretical Description of Surface Diffusion

7.5.2 Measurement of Surface Diffusion

7.6 Solid-Solid Interfaces

7.7 Microscopy of Solid Surfaces

7.7.1 Optical Microscopy

7.7.2 Electron Microscopy

7.7.3 Scanning Probe Microscopy

7.8 Diffraction Methods

7.8.1 Diffraction Patterns of Two-Dimensional Periodic Structures

7.8.2 Diffraction with Electrons, X-Rays, and Atoms

7.9 Spectroscopic Methods

7.9.1 Optical Spectroscopy of Surfaces

7.9.2 Spectroscopy Using Mainly Inner Electrons

7.9.3 Spectroscopy with Outer Electrons

7.9.4 Secondary Ion Mass Spectrometry

7.10 Summary

7.11 Exercises

 

8. Adsorption

8.1 Introduction

8.1.1 Definitions

8.1.2 Adsorption Time

8.1.3 Classification of Adsorption Isotherms

8.1.4 Presentation of Adsorption Isotherms

8.2 Thermodynamics of Adsorption

8.2.1 Heats of Adsorption

8.2.2 Differential Quantities of Adsorption and Experimental Results

8.3 Adsorption Models

8.3.1 Langmuir Adsorption Isotherm

8.3.2 Langmuir Constant and Gibbs Energy of Adsorption

8.3.3 Langmuir Adsorption with Lateral Interactions

8.3.4 BET Adsorption Isotherm

8.3.5 Adsorption on Heterogeneous Surfaces

8.3.6 Potential Theory of Polanyi

8.4 Experimental Aspects of Adsorption from Gas Phase

8.4.1 Measuring Adsorption to Planar Surfaces

8.4.2 Measuring Adsorption to Powders and Textured Materials

8.4.3 Adsorption to Porous Materials

8.4.4 Special Aspects of Chemisorption

8.5 Adsorption from Solution

8.6 Summary

8.7 Exercises

 

9. Surface Modification

9.1 Introduction

9.2 Physical and Chemical Vapor Deposition

9.2.1 Physical Vapor Deposition

9.2.2 Chemical Vapor Deposition

9.3 Soft Matter Deposition

9.3.1 Self-Assembled Monolayers

9.3.2 Physisorption of Polymers

9.3.3 Polymerization on Surfaces

9.3.4 Plasma Polymerization

9.4 Etching Techniques

9.5 Lithography

9.6 Summary

9.7 Exercises

 

10. Friction, Lubrication, and Wear

10.1 Friction

10.1.1 Introduction

10.1.2 Amontons' and Coulomb's Law

10.1.3 Static, Kinetic, and Stick-Slip Friction

10.1.4 Rolling Friction

10.1.5 Friction and Adhesion

10.1.6 Techniques to Measure Friction

10.1.7 Macroscopic Friction

10.1.8 Microscopic Friction

10.2 Lubrication

10.2.1 Hydrodynamic Lubrication

10.2.2 Boundary Lubrication

10.2.3 Thin-Film Lubrication

10.2.4 Superlubricity

10.2.5 Lubricants

10.3 Wear

10.4 Summary

10.5 Exercises

 

11. Surfactants, Micelles, Emulsions, and Foams

11.1 Surfactants

11.2 Spherical Micelles, Cylinders, and Bilayers

11.2.1 Critical Micelle Concentration

11.2.2 Influence of Temperature

11.2.3 Thermodynamics of Micellization

11.2.4 Structure of Surfactant Aggregates

11.2.5 Biological Membranes

11.3 Macroemulsions

11.3.1 General Properties

11.3.2 Formation

11.3.3 Stabilization

11.3.4 Evolution and Aging

11.3.5 Coalescence and Demulsification

11.4 Microemulsions

11.4.1 Size of Droplets

11.4.2 Elastic Properties of Surfactant Films

11.4.3 Factors Influencing the Structure of Microemulsions

11.5 Foams

11.5.1 Classification, Application, and Formation

11.5.2 Structure of Foams

11.5.3 Soap Films

11.5.4 Evolution of Foams

11.6 Summary

11.7 Exercises

 

12. Thin Films on Surfaces of Liquids

12.1 Introduction

12.2 Phases of Monomolecular Films

12.3 Experimental Techniques to Study Monolayers

12.3.1 Optical Microscopy

12.3.2 Infrared and Sum Frequency Generation Spectroscopy

12.3.3 X-Ray Reflection and Diffraction

12.3.4 Surface Potential

12.3.5 Rheologic Properties of Liquid Surfaces

12.4 Langmuir-Blodgett Transfer

12.5 Summary

12.6 Exercises

 

13. Solutions to Exercises

 

14. Analysis of Diffraction Patterns

14.1 Diffraction at Three-Dimensional Crystals

14.1.1 Bragg Condition

14.1.2 Laue Condition

14.1.3 Reciprocal Lattice

14.1.4 Ewald Construction

14.2 Diffraction at Surfaces

14.3 Intensity of Diffraction Peaks

 

Appendix A Symbols and Abbreviations

References

Index


Hans-Jürgen Butt is Director at the Max Planck Institute of Polymer Research in Mainz, Germany. He studied physics in Hamburg and Göttingen, Germany. Then he went to the Max-Planck-Institute of Biophysics in Frankfurt to work in Ernst Bamberg's group. After receiving his Ph.D. in 1989 he went as a post-doc to Santa Barbara, California. From 1990-95 he spent as a researcher back in Germany at the Max-Planck-Institute for Biophysics. In 1996 he became associate professor for physical chemistry at the University Mainz, three years later full professor at the University of Siegen. Only two years later he joined the Max Planck Institute of Polymer Research in Mainz and became director for Experimental Physics. His research topics include Surface forces and wetting.

 

Karlheinz Graf graduated at the Institute for Physical Chemistry in Mainz, and spent a postdoc at the University of California, Santa Barbara (UCSB). He has served as Project leader at the Max-Planck-Institute for Polymer Research, where his research concentrated on droplet evaporation, the structuring of polymer surfaces, and on constructing a special device for measuring forces between a solid surface and an adaptive lipid monolayer in a Langmuir trough. Afterwards he was acting Professor in Physical and Analytical Chemistry at the University of Siegen. After a short period at the University of Duisburg-Essen he became Professor for Physical Chemistry at the University of Applied Sciences (Hochschule Niederrhein) in Krefeld.

 

Michael Kappl studied physics at the University of Regensburg and the Technical University of Munich, and did his PhD thesis work in Ernst Bamberg's group at the Max Planck Institute of Biophysics in Frankfurt. After a year of postdoctoral research at the University of Mainz in the group of Prof. Butt, he worked as a consultant for Windows NT network solutions at the Pallas Soft AG, Regensburg. In 2000, he rejoined the group of Hans-Jürgen Butt. Since 2002 he is group leader at the Max Planck Institute for Polymer Research. By using focused ion beam methods, his investigates the adhesion and friction of micro- and nanocontacts, and capillary forces


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.