Budzier / Gerlach | Pyrometrie und Thermografie | Buch | 978-3-527-41399-7 | sack.de

Buch, Deutsch, 331 Seiten, Format (B × H): 175 mm x 244 mm, Gewicht: 682 g

Budzier / Gerlach

Pyrometrie und Thermografie

Leitfaden für die Praxis
1. Auflage 2023
ISBN: 978-3-527-41399-7
Verlag: Wiley-VCH GmbH

Leitfaden für die Praxis

Buch, Deutsch, 331 Seiten, Format (B × H): 175 mm x 244 mm, Gewicht: 682 g

ISBN: 978-3-527-41399-7
Verlag: Wiley-VCH GmbH


Das Buch bietet einen praxisorientierten Überblick über Funktion und Anwendung der berühungslosen Temperaturmessmethoden Pyrometrie und Thermografie.

Budzier / Gerlach Pyrometrie und Thermografie jetzt bestellen!

Weitere Infos & Material


Einführung in die Pyrometrie und die Thermografie
Radiometrische Grundlagen
Sensor- und Gerätekennwerte: thermische, räumliche und zeitliche Auflösung; Kalibrierung; Messunsicherheit
Infrarotsensoren: thermische Sensoren, Quantendetektoren, Vergleich
Überblick über Anwendungen
Pyrometer: Aufbau, Eigenschaften, Anwendungen
Thermografie-Kameras: Aufbau, Eigenschaften, Anwendungen

Vorwort ix

Symbolverzeichnis xi

Abkürzungsverzeichnis xv

1 Einführung 1

1.1 Infrarotstrahlung 1

1.2 Technische Anwendungen 4

1.3 Vorteile der berührungslosen Temperaturmessung 6

1.4 Historische Entwicklung 7

Literatur 12

2 Radiometrische Grundlagen 13

2.1 Strahlungsphysik 13

2.1.1 Ausbreitung von Strahlung 13

2.1.2 Ausbreitung in verlustfreien Medien 16

2.2 Strahlungsgrößen 22

2.2.1 Strahlungsfeldbezogene Größen 22

2.2.2 Senderseitige Größen 23

2.2.3 Empfängerseitige Größen 24

2.2.4 Spektrale Größen 24

2.2.5 Absorption, Reflexion und Transmission 26

2.3 Strahlungsgesetze 27

2.3.1 Planck’sches Strahlungsgesetz 27

2.3.2 Wien’sches Verschiebungsgesetz 31

2.3.3 Stefan-Boltzmann-Gesetz 34

2.3.4 Kirchhoff’sches Strahlungsgesetz 36

2.3.5 Fotometrisches Grundgesetz 37

2.4 Emission 46

2.4.1 Emissionsgrad 46

2.4.2 Schwarze Strahler 48

2.4.3 Emission realer Körper 56

2.4.4 Bestimmung des Emissionsgrades 61

2.5 Reflexion 64

2.5.1 Reflexionsgrad 64

2.5.2 Reflexion an Grenzflächen 65

2.5.3 ReflexionandünnendielektrischenSchichten 66

2.6 Transmission 70

2.6.1 Transmissionsgrad 70

2.6.2 Transmission von Körpern 71

2.6.3 Transmission der Atmosphäre 75

2.6.4 Abhängigkeit von der CO 2 -Konzentration 81

Literatur 82

3 Sensor- und Gerätekennwerte 85

3.1 Thermische Auflösung 85

3.1.1 Empfindlichkeit 85

3.1.2 Rauschen 89

3.1.3 Rauschäquivalente Leistung NEP 106

3.1.4 Detektivität 108

3.1.5 Rauschäquivalente Temperaturdifferenz NETD 110

3.1.6 Inhomogenitätsäquivalente Temperaturdifferenz IEDT 113

3.2 Räumliche Auflösung 115

3.2.1 Optisch-geometrische Beziehungen einer scharfen Abbildung 115

3.2.2 Begrenzung der Ortsauflösung 117

3.2.3 Spaltbildfunktion und Messfleckgröße 119

3.2.4 Modulationsübertragungsfunktion MTF 121

3.3 Zeitliche Auflösung 132

3.3.1 Zeitkonstante 133

3.3.2 Einstellzeit 135

3.3.3 Erfassungszeit 137

3.4 Zusammenfassung 137

Literatur 137

4 Infrarotsensoren 139

4.1 Thermische Infrarotsensoren 140

4.1.1 Wirkprinzipien 140

4.1.2 Thermoelektrische Strahlungssensoren 145

4.1.3 Pyroelektrische Sensoren 147

4.1.4 Mikrobolometer 149

4.2 Photonensensoren 153

4.2.1 Wirkprinzipien 154

4.2.2 Fotowiderstände 162

4.2.3 Fotodioden 166

4.2.4 Bildgebene Photonensensoren 168

4.3 Vergleich von thermischen und photonischen Sensoren 170

4.3.1 Thermische Auflösung 172

4.3.2 Zeitliche Auflösung 173

4.3.3 Kosten 173

4.3.4 Energieverbrauch 174

4.4 Kühlung von Sensoren 174

4.4.1 Thermoelektrische Kühler 175

4.4.2 Direktkontaktkühlung 176

4.4.3 Joule-Thomson-Kühler 177

4.4.4 Kleinkältemaschinen 178

4.4.5 Vergleich der Kühlverfahren 180

Literatur 182

5 Pyrometer 187

5.1 Aufbau und Funktionsweise 187

5.1.1 Grundaufbau 187

5.1.2 Funktionsweise 188

5.1.3 Berücksichtigung parasitärer Strahlungsanteile 191

5.1.4 Pyrometergleichung 192

5.2 Grundtypen 193

5.2.1 Gleichlichtpyrometer 194

5.2.2 Wechsellichtpyrometer 194

5.3 Messverfahren 196

5.3.1 Gesamtstrahlungspyrometer 198

5.3.2 Spektralpyrometer 202

5.3.3 Bandstrahlungspyrometer 206

5.3.4 Verhältnispyrometer 212

5.3.5 Mehrkanalpyrometer 218

5.4 Messunsicherheit 220

5.4.1 Kalibrierung 220

5.4.2 Absolute und relative Messunsicherheit 221

5.4.3 Umfeldfaktor SSE 223

5.5 Kenngrößen und Klassifizierung 226

5.5.1 Kenngrößen 226

5.5.2 Klassifizierung von Pyrometern 227

5.5.3 Spezielle Baugruppen für Pyrometer 231

5.6 Auswahl eines für eine Messaufgabe geeigneten Pyrometers 234

5.6.1 Allgemeine pyrometrische Messungen 235

5.6.2 Pyrometrische Temperaturmessungen an speziellen Materialien 238

5.6.3 Applikationen mit Quotientenpyrometern 240

Literatur 241

6 Thermografie 243

6.1 Aufbau und Funktionsweise 244

6.1.1 Aufbau 244

6.1.2 Funktionsweise 245

6.2 Bauarten 247

6.2.1 Scannende Thermobildgeräte 247

6.2.2 Zeilenkameras 248

6.2.3 Starrende Thermobildkameras 249

6.3 Messverfahren 256

6.3.1 Bandstrahlungsthermobildgeräte 257

6.3.2 Spektralkameras 258

6.3.3 Räumliche Auflösung 259

6.4 Justage 264

6.4.1 Ursachen der Ungleichförmigkeit 265

6.4.2 Arbeitspunkteinstellung 269

6.4.3 Korrektur defekter Pixel 272

6.4.4 Korrektur der Ungleichförmigkeit (NUC) 279

6.4.5 Radiometrische Justage 297

6.4.6 Zusammenfassung 299

6.5 Messunsicherheit 301

6.5.1 Ungleichförmigkeit 301

6.5.2 Umfeldeinfluss (Size-of-Source-Effekt) 302

6.5.3 Kalibrierung 304

6.6 Kenngrößen und Klassifizierung 305

6.6.1 Kenngrößen von Thermobildgeräten 305

6.6.2 Klassifikation von Thermobildgeräten 308

6.7 Auswahl einer für eine Messaufgabe geeigneten Thermobildkamera 311

6.7.1 Allgemeine Messungen mit Bandstrahlungsthermobildgeräten 313

6.7.2 Bandstrahlungsthermobildgeräte für konkrete Anwendungen 314

6.7.3 Spektralkameras 314

6.8 Anwendungen 315

6.8.1 Passive Thermografie 315

6.8.2 Aktive Thermografie 317

6.8.3 Auswertemethoden in der Thermografie 318

Literatur 319

Stichwortverzeichnis 323


Helmut Budzier hat Elektrotechnik an der Technischen Universität Dresden studiert und 1987 seine Promotion zum Doktor Ingenieur auf dem Gebiet pyroelektrischer Sensoren abgelegt. Seit 1988 ist er wissenschaftlicher Mitarbeiter am Institut für Festkörperelektronik der TU Dresden und hat zahlreiche Forschungsprojekte auf den Gebieten der Sensorapplikation, Entwicklung von Thermografiesystemen und Infrarotmesstechnik geleitet.
 
Gerald Gerlach hat an der Technischen Universität Dresden Elektrotechnik studiert.
Nach seiner Promotion zum Doktor-Ingenieur 1987 hat er 1991 habilitiert und ist seit 1993 Professor an der Fakultät Elektrotechnik der Technischen Universität Dresden. Er war mehrere Jahre Sprecher des Graduiertenkollegs "Sensorik" an der TU Dresden und ist seit 1996 Direktor des Instituts für Festkörperelektronik.

Helmut Budzier hat Elektrotechnik an der Technischen Universität Dresden studiert und 1987 seine Promotion zum Doktor-Ingenieur auf dem Gebiet pyroelektrischer Sensoren abgelegt. Seit 1988 ist er wissenschaftlicher Mitarbeiter am Institut für Festkörperelektronik der TU Dresden und hat zahlreiche Forschungsprojekte auf den Gebieten der Sensorapplikation, Entwicklung von Thermografiesystemen und Infrarotmesstechnik geleitet.

Gerald Gerlach hat an der Technischen Universität Dresden Elektrotechnik studiert. Nach seiner Promotion zum Doktor-Ingenieur 1987 hat er 1991 habilitiert und ist seit 1993 Professor an der Fakultät Elektrotechnik der Technischen Universität Dresden. Er ist seit 1996 Direktor des Instituts für Festkörperelektronik. Schwerpunkte seiner Forschung sind die physikalische Wirkungsweise, die Materialien, die Herstellung und Anwendungen von festkörperelektronischen Sensoren.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.