Buch, Englisch, 208 Seiten, Format (B × H): 192 mm x 244 mm, Gewicht: 603 g
Buch, Englisch, 208 Seiten, Format (B × H): 192 mm x 244 mm, Gewicht: 603 g
ISBN: 978-0-12-411468-5
Verlag: Elsevier Science
Mathematical Neuroscience is a book for mathematical biologists seeking to discover the complexities of brain dynamics in an integrative way. It is the first research monograph devoted exclusively to the theory and methods of nonlinear analysis of infinite systems based on functional analysis techniques arising in modern mathematics.
Neural models that describe the spatio-temporal evolution of coarse-grained variables-such as synaptic or firing rate activity in populations of neurons -and often take the form of integro-differential equations would not normally reflect an integrative approach. This book examines the solvability of infinite systems of reaction diffusion type equations in partially ordered abstract spaces. It considers various methods and techniques of nonlinear analysis, including comparison theorems, monotone iterative techniques, a truncation method, and topological fixed point methods. Infinite systems of such equations play a crucial role in the integrative aspects of neuroscience modeling.
Zielgruppe
<p>neuroscience, theoretical neuroscience, applied mathematics</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Neurowissenschaften, Kognitionswissenschaft
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
Weitere Infos & Material
Part I. Methods of Nonlinear Analysis
1. Introduction to Part I
2. Notations, Definitions and Assumptions
3. Differential Inequalities
4. Monotone Iterative Methods
5. Methods of Lower and Upper Solutions
6. Truncation Method
7. Fixed Point Method
8. Stability of Solutions
PART II. Application of Nonlinear Analysis
9. Introduction to Part II
10. Continuous and Discrete Models of Neural Systems
11. Nonlinear Cable Equations
12. Reaction-Diffusion Equations
Appendix
Further Reading