E-Book, Deutsch, Band Band 2, 362 Seiten
Band 2: Wechselströme, Drehstrom, Leitungen, Anwendungen der Fourier-, der Laplace- und der Z-Transformation
E-Book, Deutsch, Band Band 2, 362 Seiten
Reihe: Grundgebiete der Elektrotechnik
ISBN: 978-3-11-063180-7
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Studierende der Elektrotechnik sowie Ingenieure in der Praxis.
Autoren/Hrsg.
Weitere Infos & Material
7 Wechselstromlehre
7.1 Zeitabhängige Ströme und Spannungen
7.1.1 Entstehung von Sinusströmen und -spannungen
In der Physik spielen periodische Schwingungen eine besondere Rolle. An zwei Beispielen soll gezeigt werden, wie elektrische Schwingungen aus der gleichmäßigen Drehung einer Spule im Magnetfeld (Beispiel 7.1: Prinzip der Induktionsmaschine) oder aus akustischen Schwingungen (Beispiel 7.2: Kondensator-Mikrofon) entstehen können. Außer solchen in ihrem Verlauf von außen erzwungenen Schwingungen gibt es auch freie elektrische Schwingungen: deren Verlauf wird im Wesentlichen durch die Bauelemente (Kondensatoren, Widerstände, Spulen, Verstärker, Glimmlampen u. a.) eines elektrischen Netzes bestimmt, vgl. Abschnitt 12.5 »Die Behandlung von Ausgleichsvorgängen«.
Unter den periodischen Schwingungen interessieren uns vor allem die sinusförmigen,weil auch die nichtsinusförmigen periodischen Vorgänge als Summesinusförmiger Schwingungen aufgefasst werden können, vgl. Abschnitt 11.2 »Fourier-Reihen«.
Beispiel 7.1: Prinzip der Induktionsmaschine (vgl. Bd. 1, Bsp. 6.2) .
Die Drehachse einer Leiterschleife steht senkrecht zu einem homogenen, zeitkonstanten Magnetfeld B? (Bild 7.1). Zur Zeit t = 0 soll für den Drehwinkel gelten:
Bei konstanter Drehgeschwindigkeit gilt
Als Proportionalitätsfaktor verwendet man hierbei ?:
Abb. 7.1: Drehung einer Leiterschleife im konstanten Magnetfeld.
Abb. 7.2: Mit einer Leiterschleife verketteter Fluss F = f1(t) und induzierte Spannung u = f2(t).
Die Größe ? gibt an, wie schnell f mit der Zeit anwächst, ist also ein Maß für die Anzahl der Umdrehungen pro Zeit; daher wird ? als Winkelgeschwindigkeit oder Kreisfrequenz bezeichnet.
Mit der Schleife ist der Fluss
verkettet (hierbei bezeichnet A die Fläche des von der Leiterschleife begrenzten ebenen Rechtecks).
In der Schleife wird dem Induktionsgesetz gemäß [vgl. Band 1, Gl. (6.2)] folgende Spannung induziert:
Der mit der Schleife verkettete Fluss F und die induzierte Spannung u sind in Bild 7.2 als Funktionen der Zeit dargestellt.
Nach dem Induktionsprinzip arbeiten die wichtigsten elektrischen Energie-Erzeuger (Generatoren); solche Induktionsmaschinen erzeugen primär immer Wechselspannungen, die allerdings bei den Gleichstrommaschinen durch Gleichrichten nach außen hin nur als Gleichspannung in Erscheinung treten. Der Wechselstrom bietet die Möglichkeit der Spannungs- und Stromtransformation und damit den Vorteil geringer Energie-Übertragungsverluste, wenn auf den Leitungen mit hohen Spannungen und kleinen Strömen gearbeitet wird.
Beispiel 7.2: Kondensatormikrofon.
Beim Kondensatormikrofon steht einer starren, unbeweglichen Platte als Gegenelektrode eine elastische Metallmembran gegenüber (Bild 7.3). Diese Membran kann auftreffenden Schallschwingungen folgen, wodurch der Plattenabstand d des Kondensators im Takt der Schallschwingungen verändert wird. Trifft beispielsweise eine sinusförmige Tonschwingung auf, so ändert sich auch der Plattenabstand sinusförmig:
Abb. 7.3: Zum Prinzip des Kondensatormikrofons.
Damit gilt für die Kapazität gemäß Gl. (3.32) aus Band 1
und mit den Abkürzungen a = d/d0 und C0 = e0 A/d0
Wenn die Auslenkung der Membran relativ klein ist (d. h. a « 1 ), konvergiert die angegebene Reihe sehr rasch, und man kann schreiben
in erster Näherung ergibt sich also auch für die Kapazität C eine sinusförmige Änderung, falls die Schallschwingung sinusförmig ist. Für die Ladung des Kondensatormikrofons gilt
für den Strom demnach
d. h. eine akustische Sinusschwingung wird in eine nahezu sinusförmige elektrische Schwingung umgewandelt, deren Amplitude offenbar von ? abhängt.
7.1.2 Periodische und nichtperiodische Vorgänge
7.1.2.1 Periodische Vorgänge
Vorgänge, bei denen sich immer wieder der gleiche Ablauf wiederholt, nennen wir periodisch. Beispiele hierfür gibt das Bild 7.4.
Abb. 7.4: Periodische Vorgänge.
In Bild 7.4a wird die Sinusschwingung dargestellt,
wobei f einen (Phasen-) Winkel bezeichnet. Die Sinusschwingung lässt sich leicht mit Hilfe der Wertetabelle (7.1) zeichnen.
Tab. 7.1:Wichtige Werte der Sinus- und Kosinusfunktion.
f | sin f | cos f |
---|
0° | 0 | 0 | 0 | 1 | 1 |
30° | 16p | 12 | 0,5 | 123 | 0,866 |
45° | 14p | 122 | 0,707 | 122 | 0,707 |
60° | 13p | 123 | 0,866 | 12 | 0,5 |
90° | 12p | 1 | 1 | 0 | 0 |
120° | 23p | 123 | 0,866 | -12 | -0,5 |
135° | 34p | 122 | 0,707 | -122 | -0,707 |
150° | 56p | 12 ... |