Buch, Englisch, 438 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 822 g
Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
Buch, Englisch, 438 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 822 g
Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
ISBN: 978-1-032-22178-6
Verlag: Chapman and Hall/CRC
Although this book covers some advanced topics, readers do not need prior computer programming experience or an advanced mathematical background. Instead, the focus is on learning how to leverage the computer and software environment to do the hard work. The problem areas discussed are related to data-driven engineering, statistics, linear algebra, and numerical methods. Some example problems discussed touch on robotics, control systems, and machine learning.
Features:
- Demonstrates through algorithms and code segments how numeric problems are solved with only a few lines of MATLAB code
- Quickly teaches students the basics and gets them started programming interesting problems as soon as possible
- No prior computer programming experience or advanced math skills required
- Suitable for students at undergraduate level who have prior knowledge of college algebra, trigonometry, and are enrolled in Calculus I
- MATLAB script files, functions, and datasets used in examples are available for download from http://www.routledge.com/9781032221410.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Zahlensysteme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik EDV | Informatik Technische Informatik
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
1. MATLAB Programming. 1.1. The MATLAB Development Environment. 1.2. Variables and Values. 1.3. MATLAB Scripts. 1.4. Input and Output. 1.5. For Loops. 1.6. Control Constructs. 1.7. Vectors and Matrices in MATLAB. 1.8. MATLAB Functions. 1.9. Functions Operating on Vectors. 1.10. Importing Data Into MATLAB. 1.11. Text Strings in MATLAB. 1.12. Exercises. 2. Graphical Data Analysis. 2.1. Using the Plot Tool. 2.2. Basic Line Plots. 2.3. 3-D Plots. 2.4. Exercises. 3. Statistical Data Analysis. 3.1. Introduction to Statistics. 3.2. Common Statistical Functions. 3.3. Moving Window Statistics. 3.4. Probability Distributions. 3.5. Generating Random Numbers. 3.6. Statistics on Matrices. 3.7. Plots of Statistical Data. 3.8. Central Limit Theorem. 3.9. Sampling and Confidence Intervals. 3.10. Statistical Significance. 3.11. Exercises. 4. Using the Symbolic Math Toolbox. 4.1. Throwing a Ball Up. 4.2. Symbolic Algebra. 4.3. Symbolic Calculus. 4.4. Symbolic Differential Equations. 4.5. Exercises. 5. Introduction to Linear Algebra. 5.1. Working with Vectors. 5.2. Working with Matrices. 5.3. Geometric Transforms. 5.4. Systems of Linear Equations. 5.5. Elimination. 5.6. LU Decomposition. 5.7. Linear System Applications. 5.8. Under-determined Systems. 5.9. Over-determined Systems and Vector Projections. 5.10. Least Squares Regression. 5.11. Left-Divide Operator. 5.12. Exercises. 6. Application of Eigenvalues and Eigenvectors. 6.1. Introduction to Eigenvalues and Eigenvectors. 6.2. Eigenvector Animation. 6.3. Finding Eigenvalues and Eigenvectors. 6.4. Properties of Eigenvalues and Eigenvectors. 6.5. Diagonalization and Powers of A. 6.6. Change of Basis and Difference Equations. 6.7. Systems of Linear ODEs. 6.8. Singular Value Decomposition (SVD). 6.9. Principal Component Analysis (PCA). 6.10. Eigenvector Animation Code. 6.11. Exercises. 7. Computational Numerical Methods. 7.1. Optimization. 7.2. Data Interpolation. 7.3. Numerical Differentiation. 7.4. Numerical Integration. 7.5. Numerical Differential Equations. 7.6. Exercises. A. Linear Algebra Appendix. B. The Number e. Bibliography. Index.