Boehm / Prautzsch | Numerical Methods | Buch | 978-1-138-41317-7 | sack.de

Buch, Englisch, 196 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 520 g

Boehm / Prautzsch

Numerical Methods


1. Auflage 2020
ISBN: 978-1-138-41317-7
Verlag: Taylor & Francis Ltd

Buch, Englisch, 196 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 520 g

ISBN: 978-1-138-41317-7
Verlag: Taylor & Francis Ltd


This book is written for engineers and other practitioners using numerical methods in their work and serves as a textbook for courses in applied mathematics and numerical analysis.

Boehm / Prautzsch Numerical Methods jetzt bestellen!

Weitere Infos & Material


Preface -- I FUNDAMENTAL CONCEPTS -- 1 Algorithms and Error Propagation -- 1.1 Algorithms -- 1.2 The Implementation of Algorithms -- 1.3 Judging an Algorithm -- 1.4 Notes and Exercises -- 2 Matrices -- 2.1 Notations -- 2.2 Products of Matrices -- 2.3 Falk’s Scheme -- 2.4 Rank and Determinant -- 2.5 Norm and Convergence -- 2.6 Notes and Exercises -- II LINEAR EQUATIONS AND INEQUALITIES -- 3 Gaussian Elimination -- 3.1 Backward Substitution -- 3.2 Gaussian Elimination -- 3.3 Pivoting -- 3.4 Notes and Exercises -- 4 The LU Factorization -- 4.1 The LU Factorization of A -- 4.2 LU Factorization with Pivoting -- 4.3 Systems of Linear Equations -- 4.4 Notes and Exercises -- 5 The Exchange Algorithm -- 5.1 Exchanging Variables -- 5.2 Scheme and Algorithm -- 5.3 Inversion -- 5.4 Linear Equations -- 5.5 Notes and Exercises -- 6 The Cholesky Factorization -- 6.1 Symmetrical Factorization -- 6.2 Existence and Uniqueness -- 6.3 Symmetric Systems of Linear Equations -- 6.4 Iterative Refinement -- 6.5 Notes and Exercises -- 7 The QU Factorization -- 7.1 The Householder Transformation -- 7.2 The Householder Algorithm -- 7.3 Systems of Linear Equations -- 7.4 Notes and Exercises -- 8 Relaxation Methods -- 8.1 Coordinate Relaxation -- 8.2 Convergence for Diagonally Dominant Matrices -- 8.3 The Minimum Problem -- 8.4 Convergence for Symmetric, Positive Definite Matrices -- 8.5 Geometric Meaning -- 8.6 Notes and Exercises -- 9 Data Fitting -- 9.1 Overdetermined Systems of Linear Equations -- 9.2 Using the QU Factorization -- 9.3 Application -- 9.4 Under determined Systems of Linear Equations -- 9.5 Application -- 9.6 Geometric Meaning and Duality -- 9.7 Notes and Exercises -- 10 Linear Optimization -- 10.1 Linear Inequalities and Linear Programming -- 10.2 Exchanging Vertices and the Simplex Method -- 10.3 Elimination -- 10.4 Data Fitting after Chebyshev -- 10.5 Notes and Exercises -- III ITERATION -- 11 Vector Iteration -- 11.1 The Eigenvalue Problem for Matrices -- 11.2 Vector Iteration after von Mises -- 11.3 Inverse Iteration -- 11.4 Improving an Approximation -- 11.5 Notes and Exercises -- 12 The LR Algorithm -- 12.1 The Algorithm of Rutishauser -- 12.2 Proving Convergence -- 12.3 Pairs of Eigenvalues with Equal Modulus -- 12.4 Notes and Exercises -- 13 One-Dimensional Iteration -- 13.1 Contractive Mappings -- 13.2 Error Bounds -- 13.3 Rate of Convergence -- 13.4 Aitken’s A2-Method -- 13.5 Geometric Acceleration -- 13.6 Roots -- 13.7 Notes and Exercises -- 14 Multi-Dimensional Iteration -- 14.1 Contractive Mappings -- 14.2 Rate of Convergence -- 14.3 Accelerating the Convergence -- 14.4 Roots of Systems -- 14.5 Notes and Exercises -- 15 Roots of Polynomials -- 15.1 The Horner Scheme -- 15.2 The Extended Horner Scheme -- 15.3 Simple Roots -- 15.4 Bairstow’s Method -- 15.5 The Extended Horner Scheme for Quadratic Factors -- 15.6 Notes and Exercises -- 16 Bernoulli’s Method -- 16.1 Linear Difference Equations -- 16.2 Matrix Notation -- 16.3 Bernoulli’s Method -- 16.4 Inverse Iteration -- 16.5 Notes and Exercises -- 17 The QD Algorithm -- 17.1 The LR Algorithm for Tridiagonal Matrices -- 17.2 The QD scheme for Polynomials -- 17.3 Pairs of Zeros with Equal Modulus -- 17.4 Notes and Exercises -- IV INTERPOLATION AND DISCRETE APPROXIMATION -- 18 Interpolation -- 18.1 Interpolation Polynomials -- 18.2 Lagrange Polynomials -- 18.3 Lagrange Form -- 18.4 Newton Form -- 18.5 Aitken’s Lemma -- 18.6 Neville’s Scheme -- 18.7 Hermite Interpolation -- 18.8 Piecewise Hermite Interpolation -- 18.9 The Cardinal Hermite Basis -- 18.10 More-Dimensional Interpolation -- 18.11 Surface Patches of Coons and Gordon -- 18.12 Notes and Exercises -- 19 Discrete Approximation -- 19.1 The Taylor Polynomials -- 19.2 The Interpolation Polynomial -- 19.3 Chebyshev Approximation -- 19.4 Chebyshev Polynomials -- 19.5 The Minimum Property -- 19.6 Expanding by Chebyshev Polynomials -- 19.7 Economization of Polynomials -- 19.8 Least Squares Method -- 19.9 The Orthogonality of Chebyshev Polynomials -- 19.10 Notes and Exercises -- 20 Polynomials in Bezier Form -- 20.1 Bernstein Polynomials -- 20.2 Polynomials in Bezier Form -- 20.3 The Construction of Position and Tangent -- 20.4 Bezier Surfaces -- 20.5 Notes and Exercises -- 21 Splines -- 21.1 Bezier Curves -- 21.2 Differentiability Conditions -- 21.3 Cubic Splines -- 21.4 The Minimum Property -- 21.5 B-Splines and Truncated Power Functions -- 21.6 Normalized B-Splines -- 21.7 De Boor’s Algorithm -- 21.8 Notes and Exercises -- V NUMERICAL DIFFERENTIATION AND INTEGRATION -- 22 Numerical Differentiation and Integration -- 22.1 Numerical Differentiation -- 22.2 Error Estimates for the Numerical Differentiation -- 22.3 Numerical Integration -- 22.4 Composite Integration Rules -- 22.5 Error Estimation for the Numerical Integration -- 22.6 Notes and Exercises -- 23 Extrapolation -- 23.1 Sequences of Approximations -- 23.2 Richardson Extrapolation -- 23.3 Iterated Richardson Extrapolation -- 23.4 Romberg Integration -- 23.5 Notes and Exercises -- 24 One-Step Methods for Differential Equations -- 24.1 Discretization -- 24.2 Discretization Error -- 24.3 Runge-Kutta Methods -- 24.4 Error Control -- 24.5 Notes and Exercises -- 25 Linear Multi-Step Methods for Differential Equations -- 25.1 Discretization -- 25.2 Convergence of Multi-Step Methods -- 25.3 Root Condition -- 25.4 Sufficient Convergence Conditions -- 25.5 Starting Values -- 25.6 Predictor-Corrector Methods -- 25.7 Step Size Control -- 25.8 Comparing One- and Multi-Step Methods -- 25.9 Notes and Exercises -- 26 The Methods by Ritz and Galerkin -- 26.1 The Principle of Minimal Energy -- 26.2 The Ritz Method -- 26.3 Galerkin’s Method -- 26.4 Relation -- 26.5 Notes and Exercises -- 27 The Finite Element Method -- 27.1 Finite Elements -- 27.2 Univariate Splines -- 27.3 Bivariate Splines -- 27.4 Numerical Examples -- 27.5 Local Coordinates -- 27.6 Notes and Exercises -- 28 Bibliography -- Index.


Boehm, Wolfgang



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.