E-Book, Englisch, 829 Seiten
ISBN: 978-1-56990-525-8
Verlag: Hanser Publications
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
In addition to their environmental advantages, as compared to the polymer composites with mineral reinforcement with high loading rates, they are distinguished by much better specific mechanical properties. This property allows to manufacture light-weight products and constructions, a fact of particular importance in transportation vehicles and aircrafts.
An international team of researchers, working in this area, collected the state-of-the-art results and demonstrate the application of synthetic, but organic materials in the form of carbon fibers, carbon nanotubes,or fibers or micro- and nanofibrils as replacements for mineral reinforcements.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Contributors;22
4;PART I – INTRODUCTION;32
4.1;Chapter 1 – Manufacturing and Processing of Polymer Composites;34
4.1.1;1.1. Introduction;34
4.1.2;1.2. Autoclave-processing;36
4.1.2.1;1.2.1. Introduction;36
4.1.2.2;1.2.2. Equipment;36
4.1.2.3;1.2.3. Laminate assembly;36
4.1.2.4;1.2.4. Process description;37
4.1.2.5;1.2.5. Further developments;38
4.1.3;1.3. Pultrusion;38
4.1.3.1;1.3.1. Introduction;38
4.1.3.2;1.3.2. Equipment;38
4.1.3.3;1.3.3. Process description;39
4.1.4;1.4. Filament winding and placement techniques;41
4.1.4.1;1.4.1. Filament winding;41
4.1.4.2;1.4.2. Tape-laying;46
4.1.5;1.5. Liquid composite molding;49
4.1.5.1;1.5.1. Introduction;49
4.1.5.2;1.5.2. LCM processes with single sided tools;50
4.1.5.3;1.5.3. Double sided tool LCM processes;54
4.1.6;1.6. Thermoforming of semifinished thermoplastic composite sheets;57
4.1.6.1;1.6.1. Double belt press forming;57
4.1.6.2;1.6.2. Continuous compression molding;57
4.1.6.3;1.6.3. Roll forming;58
4.1.7;1.7. Combined forming processes;60
4.1.7.1;1.7.1. Thermoforming and injection/compression moldi;60
4.1.7.2;1.7.2. Pultrusion/impregnation and roll formin;60
4.1.8;1.8. Post processing of composites;61
4.1.8.1;1.8.1. Welding of thermoplastics;62
4.1.9;1.9. Conclusions and outlook;63
4.1.10;References;63
4.2;Chapter 2 – Melting of Polymer-Polymer Compositesby Particulate Heating Promotersand Electromagnetic Radiation;70
4.2.1;2.1. Introduction;70
4.2.2;2.2. State of the art;71
4.2.2.1;2.2.1. Induction heating;72
4.2.2.2;2.2.2. Microwave heating;74
4.2.3;2.3. Selective melting using particulate fillers;79
4.2.3.1;2.3.1. Selective melting by induction;80
4.2.3.1.1;2.3.1.1. Effect of different susceptor materials;81
4.2.3.1.2;2.3.1.2. Effect of frequency variation;83
4.2.3.1.3;2.3.1.3. Effect of susceptor size;83
4.2.3.1.4;2.3.1.4. Application of induction heating for polymer-polymer materials;84
4.2.3.1.5;2.3.1.5. Simulation of particulate inductive heating;84
4.2.4;2.4. Selective melting by microwave radiation;88
4.2.4.1;2.4.1. Effect of different susceptor materials;88
4.2.4.2;2.4.2. Influence of dispersion quality;91
4.2.5;2.5. Concepts for an industrial application;92
4.2.6;2.6. Conclusions and outlook;93
4.2.7;Acknowledgements;94
4.2.8;References;94
4.2.9;Further Reading;95
4.3;Chapter 3 – Inter-Particle Distance and TougheningMechanisms in Particulate ThermosettingComposites;96
4.3.1;3.1. Introduction;96
4.3.2;3.2. Various conditions for fracture surface morphology;97
4.3.3;3.3. Inter-particle/void distance and toughening mecha;98
4.3.3.1;3.3.1. Theoretical inter-particle distance;99
4.3.3.2;3.3.2. Method for inter-particle distance measurement;100
4.3.3.3;3.3.3. Statistical properties of inter-particle distance;105
4.3.3.3.1;3.3.3.1. 3D particle generation;105
4.3.3.3.2;3.3.3.2. Results and discussion;108
4.3.3.4;3.3.4. Experimental inter-void distance and toughness;112
4.3.3.4.1;3.3.4.1. Method for void generation in matrix;112
4.3.3.4.2;3.3.4.2. Mechanical testing;113
4.3.3.4.3;3.3.4.3. Microscopy;113
4.3.3.4.4;3.3.4.4. Experimental results and discussion;114
4.3.4;3.4. Toughening mechanisms in the presence of compressive stress around particles/voids;120
4.3.4.1;3.4.1. Necessary conditions for cavitation;120
4.3.4.2;3.4.2. Graphical understanding of compressive stress around particles;121
4.3.4.3;3.4.3. Creating compressive stress around modifier particles as a toughening method;122
4.3.4.4;3.4.4. Production of mechanical testing specimens;123
4.3.4.5;3.4.5. Mechanical properties of toughened epoxies;124
4.3.4.6;3.4.6. Fracture surface morphology examination;124
4.3.4.7;3.4.7. Stress intensity factor influenced by compressive residual stress;128
4.3.4.8;3.4.8. Mohr circle analysis for fracture surface morphology;131
4.3.4.9;3.4.9. Interaction of toughening mechanisms;137
4.3.5;3.5. Conclusions;142
4.3.6;References;143
5;PART II – POLYMER-POLYMER COMPOSITES WITH PREMADE FIBROUS REINFORCEMENT;148
5.1;Chapter 4 – Fracture Behavior of Short Carbon Fiber Reinforced Polymer Composites;150
5.1.1;4.1. Introduction;150
5.1.2;4.2. Deformation of SCF-reinforced composites;151
5.1.2.1;4.2.1. Carbon fiber-polymer matrix interface;151
5.1.2.2;4.2.2. Fiber length;155
5.1.2.3;4.2.3. Matrix microstructure;157
5.1.2.4;4.2.4. Fiber orientation;159
5.1.3;4.3. Fiber hybridization;161
5.1.4;4.4. Fracture toughness of SCF-reinforced composites;163
5.1.5;4.5. Fatigue failure;169
5.1.6;4.6. Conclusions and outlook;172
5.1.7;References;172
5.2;Chapter 5 – Polymer-Carbon Nanotube Composites: Melt Processing, Properties and Applications;176
5.2.1;5.1. Introduction;176
5.2.2;5.2. Microscopy based characterization of dispersion, distribution, and alignment of nanotubes in polymer matrices;179
5.2.2.1;5.2.1. Light microscopy;179
5.2.2.2;5.2.2. Transmission electron microscopy;180
5.2.3;5.3. Dispersion of nanotubes by melt mixing;181
5.2.3.1;5.3.1. Theoretical considerations;181
5.2.3.2;5.3.2. Small-scale batch compounding;184
5.2.3.3;5.3.3. Twin-screw extrusion;193
5.2.4;5.4. Morphology development during shaping;195
5.2.4.1;5.4.1. Compression molding;196
5.2.4.2;5.4.2. Injection molding;198
5.2.4.3;5.4.3. Fiber spinning;200
5.2.5;5.5. Properties and applications;201
5.2.5.1;5.5.1. Mechanical reinforcement;201
5.2.5.2;5.5.2. Electrical conductivity;204
5.2.5.3;5.5.3. Resistivity changes due to external stimuli;210
5.2.5.4;5.5.4. Fire retardancy;212
5.2.6;5.6. Conclusions and outlook;213
5.2.7;Acknowledgments;214
5.2.8;Appendix;214
5.2.9;References;218
5.3;Chapter 6 – Manufacturing and Electrical Properties of Carbon Nanotube Reinforced Polymer Composites;224
5.3.1;6.1. Introduction;224
5.3.2;6.2. Functionalization of carbon nanotubes;225
5.3.3;6.3. Manufacturing carbon nanotube/polymer composites;227
5.3.3.1;6.3.1. Solution mixing;227
5.3.3.2;6.3.2. In situ polymerization;230
5.3.3.3;6.3.3. Melt mixing;231
5.3.3.4;6.3.5. Aligned carbon nanotube/polymer composites;233
5.3.4;6.4. Electrical properties of polymer/CNT composites;235
5.3.4.1;6.4.1. Percolation threshold;235
5.3.4.2;6.4.2. CNT/thermoplastic nanocomposites;236
5.3.4.2.1;6.4.2.1. Glassy thermoplastics;236
5.3.4.2.2;6.4.2.2. Semicrystalline thermoplastics;239
5.3.4.3;6.4.3. CNT/elastomer nanocomposites;246
5.3.4.4;6.4.4. Aligned CNT/polymer composites;247
5.3.5;6.5. Conclusion and outlook;250
5.3.6;References;250
5.4;Chapter 7 – Fabrication, Morphologies and Mechanical Properties of Carbon Nanotube Based Polymer Nanocomposites;256
5.4.1;7.1. Introduction;256
5.4.2;7.2. Carbon nanotubes;257
5.4.2.1;7.2.1. What is carbon nanotube?;257
5.4.2.2;7.2.2. Mechanical properties of carbon nanotubes;257
5.4.2.3;7.2.3. Functionalization and alignment of carbon nanotubes;258
5.4.3;7.3. Fabrication of polymer/carbon nanotube composites;260
5.4.3.1;7.3.1. Melt compounding;260
5.4.3.2;7.3.2. Solution blending;261
5.4.3.3;7.3.3. In situ polymerization;261
5.4.3.4;7.3.4. Other fabrication methods;261
5.4.4;7.4. Mechanical properties of polymer/carbon nanotube composites;262
5.4.4.1;7.4.1. Simulation results;262
5.4.4.2;7.4.2. Experimental results;262
5.4.5;7.5. Conclusions and outlook;272
5.4.6;Acknowledgements;274
5.4.7;References;274
5.5;Chapter 8 – Manufacturing and Properties of Aramid Reinforced Composites;282
5.5.1;8.1. Introduction;282
5.5.2;8.2. Aramid types and manufacturers;283
5.5.3;8.3. Synthesis of aramids;284
5.5.4;8.4. Commercial forms of aramids and their physical properties;286
5.5.5;8.5. Structure and properties of p-aramid fibers;289
5.5.6;8.6. Properties of p-aramid fiber reinforced polymer composites;294
5.5.6.1;8.6.1. p-Aramid FRPs with thermoset matrices;294
5.5.6.1.1;8.6.1.1. Unsaturated polyester and vinyl ester matrices;294
5.5.6.1.2;8.6.1.2. Epoxy resin matrices;295
5.5.6.1.3;8.6.1.3. Other thermoset matrices for p-aramid composites;300
5.5.6.1.4;8.6.1.4. Manufacturing of p-aramid composites with thermoset matrices;301
5.5.6.2;8.6.2. p-Aramid FRPs with thermoplastic matrices;302
5.5.7;8.7. Concluding remarks;305
5.5.8;Acknowledgements;306
5.5.9;References;306
5.6;Chapter 9 – Molecular Liquid Crystalline Polymers Reinforced Polymer Composites: The Concept of “Hairy Rods”;312
5.6.1;9.1. Introduction;312
5.6.1.1;9.1.1. Rapid preparation technologies to exclude phase separation;313
5.6.1.2;9.1.2. Advanced synthesis to obtain a homogeneous blend;314
5.6.1.3;9.1.3. Homogeneous mixtures by increased enthalpy: strong dipole-dipole interaction, hydrogen bonding and ionic interactions;315
5.6.1.4;9.1.4. Advanced molecular structure, consisting of rigid and flexible segments;315
5.6.1.5;9.1.5. Advanced molecule structure: rigid star molecules or multipodes;317
5.6.2;9.2. Molecular composites from “hairy-rod” molecules prepared via the Langmuir-Blodgett technique;317
5.6.2.1;9.2.1. Synthesis of “hairy-rod” molecules;318
5.6.2.2;9.2.2. Preparation of constructs of internal nanoscale architecture using the Langmuir-Blodgett technique;319
5.6.2.3;9.2.3. Some properties of multilayers of hairy-rod macromolecules;321
5.6.2.4;9.2.4. Construction of nanoscaled devices and functional materials;323
5.6.3;9.3. Conclusions and outlook;325
5.6.4;References;325
5.7;Chapter 10 – Electrospun Composite Nanofibers and Polymer Composites;332
5.7.1;10.1. Introduction;332
5.7.2;10.2. Electrospinning of nanofibers;334
5.7.2.1;10.2.1. Principles of electrospinning;336
5.7.2.2;10.2.2. Process optimization for gaining ultrafine nanofibers;342
5.7.3;10.3. Industrialization attempts for producing electrospun materials in a high volume;343
5.7.3.1;10.3.1. Modified spinnerets for higher outputs;343
5.7.3.2;10.3.2. Modified collector systems for producing special electrospun structures;347
5.7.4;10.4. Composite nanofibers;352
5.7.4.1;10.4.1. Testing and modeling the mechanical behavior of nanofibers for composite applications;352
5.7.4.2;10.4.2. Composite nanofibers incorporated with smaller nanoparticles;355
5.7.4.3;10.4.3. Core-shell nanofibers prepared by coaxial electrospinning;358
5.7.5;10.5. Synthetic polymer-polymer composites containing or based on electrospun nanofibers;361
5.7.5.1;10.5.1. Nanofibers as interlaminar reinforcement of composites;361
5.7.5.2;10.5.2. Electrospun nanofibers and their modifications as potential reinforcement of polymer-polymer composites;365
5.7.6;10.6. Conclusions and outlook;372
5.7.7;Acknowledgements;372
5.7.8;References;373
6;PART III – In situ NANO- AND MICROFIBRILLARPOLYMER-POLYMER COMPOSITES;382
6.1;Chapter 11 – The Concept of Micro- or NanofibrilsReinforced Polymer-Polymer Composites;384
6.1.1;11.1. Introduction: a brief historical overview;384
6.1.2;11.2. Preparation of MFC;388
6.1.2.1;11.2.1. Miscibility and compatibility in polymer blends;388
6.1.3;11.3. Mechanism of microfibril formation in polymer blends and effect of the compatibilizers on this process;394
6.1.4;11.4. Microfibrillar composites from blends of condensation polymers;398
6.1.4.1;11.4.1. Peculiarities of MFCs prepared from blends of condensation polymers;399
6.1.4.2;11.4.2. Mechanical properties of MFCs prepared from blends of condensation polymers;400
6.1.5;11.5. Microfibrillar composites from blends of condensation polymers with polyolefins;402
6.1.6;11.6. Nanofibril reinforced composites from polymer blends;407
6.1.6.1;11.6.1. Peculiarities of polymer nanocomposites;407
6.1.6.2;11.6.2. Manufacturing of nanofibrillar polymer-polymer composites;408
6.1.6.3;11.6.4. Mechanical properties of NFCs;410
6.1.7;11.7. Effect of fibril orientation on the mechanical performance of MFCs and NFCs;412
6.1.8;11.8. Opportunities arising from the MFC concept;418
6.1.8.1;11.8.1. Commercial potential of the MFC concept in the automotive industry;419
6.1.8.2;11.8.2. Commercial potential of the MFC concept for commodity purposes;419
6.1.8.3;11.8.3. Potential of the MFC concept for biomedical applications;421
6.1.9;11.9. Conclusions and outlook;424
6.1.10;Acknowledgments;425
6.1.11;References;425
6.2;Chapter 12 – Microfibril Reinforced Polymer-Polymer Composites via Hot Stretching: Preparation, Structure and Properties;432
6.2.1;12.1. Introduction;432
6.2.2;12.2. Fabrication of microfibril reinforced polymer-polymer composites;433
6.2.2.1;12.2.1. Rheological fundamental for deformation of dispersed phase;433
6.2.2.2;12.2.2. Preparation of microfibril reinforced polymer-polymer composites;434
6.2.3;12.3. Three primary factors affecting in situ fibrillation;437
6.2.3.1;12.3.1. Composition;438
6.2.3.2;12.3.2. Hot stretch ratio;440
6.2.3.3;12.3.3. Viscosity ratio;441
6.2.4;12.4. Mechanical properties of microfibril reinforced polymer-polymer composites;442
6.2.5;12.5. Rheological properties of microfibril reinforced polymer-polymer composites;446
6.2.5.1;12.5.1. Rheology-composition relationship of microfibril reinforced polymer-polymer composites;446
6.2.5.2;12.5.2. Rheology-morphology relationship of microfibril reinforced polymer-polymer composites;449
6.2.6;12.6. Crystallization property and crystal structure of microfibril reinforced polymer-polymer composites;450
6.2.6.1;12.6.1. Crystallization kinetics of microfibril reinforced polymer-polymer composites;450
6.2.6.2;12.6.2. Crystal structures of microfibril reinforced polymer-polymer composites;452
6.2.6.3;12.6.3. Crystalline morphology and aggregates of microfibril reinforced polymer-polymer composites;454
6.2.7;12.7. Application of microfibril reinforced polymer-polymer composites concept;457
6.2.7.1;12.7.1. Recycling of thermoplastic blends;457
6.2.7.2;12.7.2. Suppression of skin-core structure in injection molded polymer parts via in situ microfibrils;461
6.2.8;12.8. Conclusions;463
6.2.9;Acknowledgements;464
6.2.10;References;464
6.3;Chapter 13 – Microfibril Reinforced Polymer-Polymer Composite via Hot Stretching: Electrically Conductive Functionalization;468
6.3.1;13.1. Introduction;468
6.3.2;13.2. Isotropically conductive polymer composite;469
6.3.2.1;13.2.1. Isotropic i-CB/PET/PE;469
6.3.2.1.1;13.2.1.1. Preparation and typical morphology;469
6.3.2.1.2;13.2.1.2. The percolation behavior;471
6.3.2.1.3;13.2.1.3. The resistivity-temperature behavior;475
6.3.2.2;13.2.2. Isotropic o-CB/PET/PE;478
6.3.2.2.1;13.2.2.1. Preparation and typical morphology;478
6.3.2.2.2;13.2.2.2. The percolation behavior;479
6.3.2.2.3;13.2.2.3. The resistivity-temperature behavior during cooling;481
6.3.3;13.3. Anisotropically conductive polymer composite;482
6.3.3.1;13.3.1. Preparation and typical morphology;482
6.3.3.2;13.3.2. The percolation behavior;483
6.3.3.3;13.3.3. The resistivity-temperature behavior;485
6.3.4;13.4. Conclusions;491
6.3.5;Acknowledgments;491
6.3.6;References;492
6.4;Chapter 14 – Preparation, Mechanical Properties and Structural Characterization of Microfibrillar Composites Based on Polyethylene/Polyamide Blends;496
6.4.1;14.1. Introduction;496
6.4.2;14.2. Preparation and morphology of microfibrillar composites;499
6.4.3;14.3. Mechanical characterization of PE/PA microfibrillar composites;503
6.4.3.1;14.3.1. Tensile tests with HDPE/PA6 systems;503
6.4.3.2;14.3.2. The flexural tests;510
6.4.3.3;14.3.3. The impact tests;513
6.4.3.4;14.3.4. A comparison between the mechanical properties of PA6 and PA12 MFCs;515
6.4.4;14.4. Structure-properties relation in microfibrillar composites;517
6.4.4.1;14.4.1. Microscopy studies of HDPE/PA6 and HDPE/PA12 systems;521
6.4.4.2;14.4.2. Synchrotron X-ray studies of HDPE/PA6 and HDPE/PA12 MFC;530
6.4.4.2.1;14.4.2.1. Small-angle X-ray scattering;531
6.4.4.2.2;14.4.2.2. Wide-angle X-ray scattering;538
6.4.4.2.3;14.4.2.3. Evaluation of the TCL thickness;546
6.4.5;14.5. Conclusions and outlook;548
6.4.6;Acknowledgements;549
6.4.7;References;550
6.5;Chapter 15 – Microfibrils Reinforced Composites Based on PP and PET: Effect of Draw Ratioon Morphology, Static and Dynamic Mechanical Properties, Crystallization and Rheology;556
6.5.1;15.1. Introduction;556
6.5.2;15.2. Experimental details: materials and procedures;559
6.5.3;15.3. Sample characterization;563
6.5.3.1;15.3.1. Morphology development;563
6.5.3.2;15.3.2. Static mechanical properties;568
6.5.3.2.1;15.3.2.1. Tensile properties;568
6.5.3.2.2;15.3.2.2. Flexural and impact properties;570
6.5.3.3;15.3.3. Dynamic mechanical analysis;570
6.5.3.3.1;15.3.3.1. Storage modulus;571
6.5.3.3.2;15.3.3.2. Loss modulus;573
6.5.3.3.3;15.3.3.3. Mechanical loss factor (tan d);574
6.5.3.4;15.3.4. Crystallization;576
6.5.3.4.1;15.3.4.1. Non-isothermal crystallization behavior of MFBs and MFCs;576
6.5.3.4.2;15.3.4.2. Crystallization time;578
6.5.3.4.3;15.3.4.3. X-ray diffraction;579
6.5.3.5;15.3.5. Dynamic rheology;582
6.5.3.5.1;15.3.5.1. Storage and loss shear modulus;582
6.5.3.5.2;15.3.5.2. Complex viscosity and tan d;585
6.5.4;15.4. Conclusions and outlook;586
6.5.5;References;588
6.6;Chapter 16 – Structural and Mechanical Characterization of the Reinforcement and Precursors of Micro- and Nanofibrils Reinforced Polymer-Polymer Composites;594
6.6.1;16.1. Introduction;594
6.6.1.1;16.1.1. Monitoring structure variation in polymer-polymer composites;594
6.6.1.2;16.1.2. Progress in X-ray scattering;595
6.6.1.3;16.1.3. Progress in methods for the analysis of scattering data;596
6.6.2;16.2. Practice of experiment and data analysis;596
6.6.3;16.3. WAXD fiber mapping;597
6.6.3.1;16.3.1. Motivation and method design;597
6.6.3.2;16.3.2. Actions required by the user;597
6.6.3.3;16.3.3. Automated mapping;599
6.6.3.4;16.3.4. Application;599
6.6.4;16.4. X-Ray scattering fiber tomography;600
6.6.4.1;16.4.1. Motivation;600
6.6.4.2;16.4.2. Introduction of the method;602
6.6.4.3;16.4.3. Applications;605
6.6.5;16.5. SAXS monitoring of mechanical tests;607
6.6.5.1;16.5.1. Motivation and method development;607
6.6.6;16.6. Combining time resolution and spatial resolution;613
6.6.7;16.7. Conclusions and outlook;614
6.6.8;Acknowledgment;615
6.6.9;References;615
6.7;Chapter 17 – Application Opportunities of the Microfibril Reinforced Composite Concept;620
6.7.1;17.1. Introduction;620
6.7.2;17.2. Barrier properties of polymer blends and composites;623
6.7.2.1;17.2.1. Theoretical aspects of permeability;624
6.7.2.2;17.2.2. How crystallinity affects permeability;625
6.7.3;17.3. MFC application opportunities as packaging with improved barrier properties;626
6.7.4;17.4. MFC permeation experiments;627
6.7.4.1;17.4.1. Experimental setup;627
6.7.4.2;17.4.2. Preliminary permeation experiments;627
6.7.4.2.1;17.4.2.1. Effect of PET content;628
6.7.4.2.2;17.4.2.2. Effect of draw ratio;629
6.7.4.3;17.4.3. MFC permeability investigation;629
6.7.4.3.1;17.4.3.1. Manufacturing parameters;629
6.7.4.3.2;17.4.3.2. Film morphology;630
6.7.4.3.3;17.4.3.3. Permeability Test Results;632
6.7.4.3.4;17.4.3.4. Analysis using the Taguchi method;633
6.7.4.3.5;17.4.3.5. Sample crystallinity;633
6.7.4.3.6;17.4.3.6. The role of aging;634
6.7.4.4;17.4.4. Mechanical properties;635
6.7.5;17.5. MFC permeability modeling;635
6.7.6;17.6. Application opportunities in vehicle manufacturing;640
6.7.7;17.7. Applications for biomedical purposes;642
6.7.8;17.8. Other applications of the MFC concept;651
6.7.8.1;17.8.1. Recycling of blended plastic waste streams;651
6.7.8.2;17.8.2. Electroconductive materials;652
6.7.9;17.9. Conclusions and outlook;653
6.7.10;Acknowledgements;654
6.7.11;References;654
6.8;Chapter 18 – Polylactide Based Bio-Resorbable Bone Nails: Improvements of Strength and Stiffness by Microfibrillar Reinforcement;658
6.8.1;18.1. Introduction;658
6.8.2;18.2. Materials, preparation, characterization;660
6.8.2.1;18.2.1. Materials used;660
6.8.2.2;18.2.2. Specimen characterization;661
6.8.2.3;18.2.3. MFC preparation;661
6.8.3;18.3. Morphology and mechanical properties;666
6.8.3.1;18.3.1. Morphology of the samples;666
6.8.3.2;18.3.2. Mechanical properties;668
6.8.4;18.4. Conclusions;671
6.8.5;Acknowledgements;671
6.8.6;References;671
7;PART IV – SINGLE POLYMER COMPOSITES;672
7.1;Chapter 19 – Micro- and Nanofibrillar Single Polymer Composites;674
7.1.1;19.1. Introduction;674
7.1.2;19.2. Producing polymeric micro- and nanofibers;675
7.1.2.1;19.2.1. Melt blowing;676
7.1.2.2;19.2.2. Electrospinning;677
7.1.2.3;19.2.3. Bicomponent melt spinning;678
7.1.3;19.3. Mechanical properties of polymer micro- and nanofibers;680
7.1.3.1;19.3.1. Characterization and modeling of the mechanical properties;680
7.1.4;19.4. Manufacturing routes for micro- and nano-SPC materials;681
7.1.4.1;19.4.1. In situ creation of polymer micro- and nanofibrils;682
7.1.4.2;19.4.2. Reactive process in situ copolymerization method;684
7.1.4.3;19.4.3. Hot-compaction method;686
7.1.4.4;19.4.4. Film stacking method;687
7.1.4.5;19.4.5. Resin infusion method;687
7.1.4.6;19.4.6. Overheating method;687
7.1.4.7;19.4.7. Co-extrusion method;687
7.1.5;19.5. Commercially available SPC materials;688
7.1.5.1;19.5.1. Curv;688
7.1.5.2;19.5.2. PURE;690
7.1.5.3;19.5.3. PARA-LITE PP;690
7.1.5.4;19.5.4. Armordon;690
7.1.5.5;19.5.5. Kaypla;691
7.1.5.6;19.5.6. Comfil SPCs and injection moldable SPC pellets (ESPRI project);691
7.1.6;19.6. Case studies;692
7.1.6.1;19.6.1. SPCs by in situ creation of nanofibrils and hot compaction;692
7.1.6.2;19.6.2. SPCs by melt spinning and in situ copolymerization;696
7.1.7;19.7. Summary and outlook;698
7.1.8;References;698
7.2;Chapter 20 – Polymorphism- and Stereoregularity-Based Single Polymer Composites;704
7.2.1;20.1. Introduction;704
7.2.1.1;20.1.1. Definitions;705
7.2.1.2;20.1.2. Preparation of single polymer composites;706
7.2.2;20.2. Stereoregularity, crystallization and polymorphism in polymers;708
7.2.2.1;20.2.1. Stereoregularity of macromolecules;709
7.2.2.2;20.2.2. Crystallization of polymers;710
7.2.2.3;20.2.3. Polymorphism in polymers;711
7.2.3;20.3. Amorphous matrix with amorphous reinforcement;713
7.2.3.1;20.3.1. Single polymer microcomposites;713
7.2.3.2;20.3.2. Single polymer nanocomposites;714
7.2.4;20.4. Amorphous matrix with semicrystalline reinforcement;714
7.2.4.1;20.4.1. Single polymer microcomposites;715
7.2.4.2;20.4.2. Single polymer nanocomposites;715
7.2.5;20.5. Semicrystalline matrix with semicrystalline reinforcement;716
7.2.5.1;20.5.1. Single polymer microcomposites;716
7.2.5.2;20.5.2. Single polymer nanocomposites;722
7.2.6;20.6. Applications of SPCs;725
7.2.7;20.7. Outlook and future trends;725
7.2.8;Acknowledgements;726
7.2.9;References;726
7.3;Chapter 21 – Layered Polymer-Polymer Composite with Nanocomposite as Reinforcement;730
7.3.1;21.1. Introduction;730
7.3.2;21.2. Graft polymerization onto nanoparticles;731
7.3.3;21.3. Oriented PP reinforcements filled with nano-SiO2;733
7.3.4;21.4. Manufacturing and characterization of PP homopolymer-PP copolymer composite with nanocomposite as reinforcement;742
7.3.5;21.5. Conclusions;746
7.3.6;Acknowledgement;747
7.3.7;References;747
7.4;Chapter 22 – Manufacturing of Self-Reinforced All-PPComposites;750
7.4.1;22.1. Introduction;750
7.4.2;22.2. Self-reinforced thermoplastic fiber composite materials;750
7.4.3;22.3. Manufacturing concept and composite structure;752
7.4.3.1;22.3.1. Primary shaping;752
7.4.3.2;22.3.2. Semifinished product manufacturing;753
7.4.3.3;22.3.3. Compaction and molding;754
7.4.3.4;22.3.4. Composite structure;754
7.4.4;22.4. The processing technology of hot-compaction;755
7.4.4.1;22.5. Molding strategies;757
7.4.4.2;22.4.1. Preheating;755
7.4.4.3;22.4.2. Compaction;755
7.4.4.4;22.4.3. Cooling;757
7.4.5;22.5. Molding strategies;757
7.4.5.1;22.5.1. Thermoforming hot-compacted semifinished plate products;758
7.4.5.2;22.5.2. Compression molding in combination with the hot-compaction of semifinished textile products;759
7.4.6;22.6. Property spectrum of SR-PP composites;760
7.4.7;22.7. Fields of application for self-reinforced organic sheets made of PP;763
7.4.8;22.8. Conclusions and outlook;765
7.4.9;Acknowledgement;765
7.4.10;References;765
7.5;Chapter 23 – Single Polymer Composites via Shear Controlled Orientation Injection Molding (SCORIM) or Oscillating Packing Injection Molding (OPIM) Techniques;770
7.5.1;23.1. Introduction;770
7.5.2;23.2. Self-reinforced polyethylene by SCORIM techniques;774
7.5.3;23.3. Self-reinforced polypropylene by SCORIM techniques;786
7.5.4;23.4. Other polymer composites reinforced by SCORIM techniques;795
7.5.5;23.5. Conclusions and outlook;796
7.5.6;References;796
8;List of Acknowledgements;800
9;Author Index;812
10;Subject Index;816