Beyerer / Niggemann / Maier | Machine Learning for Cyber Physical Systems | Buch | 978-3-662-62745-7 | sack.de

Buch, Englisch, Band 13, 130 Seiten, Paperback, Format (B × H): 168 mm x 240 mm, Gewicht: 248 g

Reihe: Technologien für die intelligente Automation

Beyerer / Niggemann / Maier

Machine Learning for Cyber Physical Systems

Selected papers from the International Conference ML4CPS 2020

Buch, Englisch, Band 13, 130 Seiten, Paperback, Format (B × H): 168 mm x 240 mm, Gewicht: 248 g

Reihe: Technologien für die intelligente Automation

ISBN: 978-3-662-62745-7
Verlag: Springer


This open access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It  contains selected papers from the fifth international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Berlin, March 12-13, 2020.  

Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.  

Beyerer / Niggemann / Maier Machine Learning for Cyber Physical Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- Energy Profile Prediction of Milling Processes Using Machine Learning Techniques.- Improvement of the prediction quality of electrical load profiles with artficial neural networks.- Detection and localization of an underwater docking station.- Deployment architecture for the local delivery of ML-Models to the industrial shop floor.- Deep Learning in Resource and Data Constrained Edge Computing Systems.- Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis.- Proposal for requirements on industrial AI solutions.- Information modeling and knowledge extraction for machine learning applications in industrial production systems.- Explanation Framework for Intrusion Detection.- Automatic Generation of Improvement Suggestions for Legacy, PLC Controlled Manufacturing Equipment Utilizing Machine Learning.- Hardening Deep Neural Networks in Condition Monitoring Systems against Adversarial ExampleAttacks.- First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems.- Machine learning for reconstruction of highly porous structures from FIB-SEM nano-tomographic data.


Prof. Dr.-Ing. Jürgen Beyerer is Professor at the  Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB.

Dr. Alexander Maier is head of group Machine Learning at Fraunhofer IOSB-INA. His focus is on the development of algorithms for big data applications in Cyber-Physical Systems (diagnostics, optimization, predictive maintenance) and the transfer of research results to industry. 

Prof. Oliver Niggemann got his doctorate in 2001 at the University of Paderborn with the topic "Visual Data Mining of Graph-Based Data". He then worked for almost 8 years in leading positions in the industry. From 2008-2019 he held a professorship at the Institute for Industrial Information Technologies (inIT) in Lemgo/Germany. Until 2019 Prof. Niggemann was also deputy head of the Fraunhofer IOSB-INA, which worksin industrial automation. On April 1, 2019 Prof. Niggemann took over the university professorship "Computer Science in Mechanical Engineering" at the Helmut-Schmidt-University in Hamburg / Germany. There he does research at the Institute for Automation Technology IfA in the field of artificial intelligence and machine learning for cyber-physical systems.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.