Buch, Englisch, 358 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 674 g
Buch, Englisch, 358 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 674 g
ISBN: 978-0-367-46786-9
Verlag: CRC Press
This second edition contains new chapters on edge-preserving and sparsity-enforcing regularization in addition to maximum likelihood methods and Bayesian regularization for Poisson data.
The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of students from different backgrounds, with readers needing just a rudimentary understanding of analysis, geometry, linear algebra, probability theory, and Fourier analysis.
The authors concentrate on presenting easily implementable and fast solution algorithms, and this second edition is accompanied by numerical examples throughout. It will provide readers with the appropriate background needed for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.
Key features:
- Provides an accessible introduction to the topic while keeping mathematics to a minimum
- Interdisciplinary topic with growing relevance and wide-ranging applications
- Accompanied by numerical examples throughout
Zielgruppe
Postgraduate, Undergraduate, Undergraduate Advanced, and Undergraduate Core
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Forschungsmethodik, Wissenschaftliche Ausstattung
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Naturwissenschaften, Technik, Medizin
Weitere Infos & Material
1. Introduction. 2. Examples of image blurring. 3. The ill-posedness of image deconvolution. 4. Quadratic tikhonov regularization. 5. Iterative regularization methods. 6. Examples of linear inverse problems. 7. Singular value decomposition (SVD). 8. Inversion methods revisited. 9. Edge-preserving regularization. 10. Sparsity-enforcing regularization. 11. Statistical approaches to linear inverse problems 12. Statistical methods in the case of additive Gaussian noise 13. Statistical methods in the case of Poisson data 14. Conclusions