Berkovich / Janko | Groups of Prime Power Order | E-Book | sack.de
E-Book

E-Book, Englisch, Band 56, 664 Seiten

Reihe: De Gruyter Expositions in Mathematics

Berkovich / Janko Groups of Prime Power Order

Volume 3

E-Book, Englisch, Band 56, 664 Seiten

Reihe: De Gruyter Expositions in Mathematics

ISBN: 978-3-11-025448-8
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume:

impact of minimal nonabelian subgroups on the structure of p-groups,
classification of groups all of whose nonnormal subgroups have the same order,
degrees of irreducible characters of p-groups associated with finite algebras,
groups covered by few proper subgroups,
p-groups of element breadth 2 and subgroup breadth 1,
exact number of subgroups of given order in a metacyclic p-group,
soft subgroups,
p-groups with a maximal elementary abelian subgroup of order p2,
p-groups generated by certain minimal nonabelian subgroups,
p-groups in which certain nonabelian subgroups are 2-generator.

The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Berkovich / Janko Groups of Prime Power Order jetzt bestellen!

Zielgruppe


Researchers, Graduate Students of Mathematics; Academic Libraries

Weitere Infos & Material


1;Contents;6
2;List of definitions and notations;10
3;Preface;16
4;Prerequisites from Volumes 1 and 2;18
5;§93 Nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4;28
6;§94 Nonabelian 2-groups all of whose minimal nonabelian subgroups are nonmetacyclic and have exponent 4;35
7;§95 Nonabelian 2-groups of exponent 2e which have no minimal nonabelian subgroups of exponent 2e;37
8;§96 Groups with at most two conjugate classes of nonnormal subgroups;39
9;§97 p-groups in which some subgroups are generated by elements of order p;51
10;§98 Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic to M2n+1, n> 3 fixed;58
11;§99 2-groups with sectional rank at most 4;61
12;§100 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian;73
13;§101 p-groups G with p > 2 and d(G) = 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian;93
14;§102 p-groups G with p > 2 and d(G) > 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian;104
15;§103 Some results of Jonah and Konvisser;120
16;§104 Degrees of irreducible characters of p-groups associated with finite algebras;124
17;§105 On some special p-groups;129
18;§106 On maximal subgroups of two-generator 2-groups;137
19;§107 Ranks of maximal subgroups of nonmetacyclic two-generator 2-groups;140
20;§108 p-groups with few conjugate classes of minimal nonabelian subgroups;147
21;§109 On p-groups with metacyclic maximal subgroup without cyclic subgroup of index p;149
22;§110 Equilibrated p-groups;152
23;§111 Characterization of abelian and minimal nonabelian groups;161
24;§112 Non-Dedekindian p-groups all of whose nonnormal subgroups have the same order;167
25;§113 The class of 2-groups in §70 is not bounded;175
26;§114 Further counting theorems;179
27;§115 Finite p-groups all of whose maximal subgroups except one are extraspecial;184
28;§116 Groups covered by few proper subgroups;189
29;§117 2-groups all of whose nonnormal subgroups are either cyclic or of maximal class;203
30;§118 Review of characterizations of p-groups with various minimal nonabelian subgroups;206
31;§119 Review of characterizations of p-groups of maximal class;212
32;§120 Nonabelian 2-groups such that any two distinct minimal nonabelian subgroups have cyclic intersection;219
33;§121 p-groups of breadth 2;224
34;§122 p-groups all of whose subgroups have normalizers of index at most p;231
35;§123 Subgroups of finite groups generated by all elements in two shortest conjugacy classes;264
36;§124 The number of subgroups of given order in a metacyclic p-group;266
37;§125 p-groups G containing a maximal subgroup H all of whose subgroups are G-invariant;296
38;§126 The existence of p-groups G1 < G such that Aut(G1) Aut(G);299
39;§127 On 2-groups containing a maximal elementary abelian subgroup of order 4;302
40;§128 The commutator subgroup of p-groups with the subgroup breadth 1;304
41;§129 On two-generator 2-groups with exactly one maximal subgroup which is not two-generator;312
42;§130 Soft subgroups of p-groups;314
43;§131 p-groups with a 2-uniserial subgroup of order p;319
44;§132 On centralizers of elements in p-groups;322
45;§133 Class and breadth of a p-group;327
46;§134 On p-groups with maximal elementary abelian subgroup of order p2;331
47;§135 Finite p-groups generated by certain minimal nonabelian subgroups;342
48;§136 p-groups in which certain proper nonabelian subgroups are two-generator;355
49;§137 p-groups all of whose proper subgroups have its derived subgroup of order at most p;365
50;§138 p-groups all of whose nonnormal subgroups have the smallest possible normalizer;370
51;§139 p-groups with a noncyclic commutator group all of whose proper subgroups have a cyclic commutator group;382
52;§140 Power automorphisms and the norm of a p-group;390
53;§141 Nonabelian p-groups having exactly one maximal subgroup with a noncyclic center;395
54;§142 Nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian;397
55;§143 Alternate proof of the Reinhold Baer theorem on 2-groups with nonabelian norm;400
56;§144 p-groups with small normal closures of all cyclic subgroups;403
57;Appendix 27 Wreathed 2-groups;411
58;Appendix 28 Nilpotent subgroups;420
59;Appendix 29 Intersections of subgroups;432
60;Appendix 30 Thompson’s lemmas;443
61;Appendix 31 Nilpotent p’-subgroups of class 2 in GL(n, p);455
62;Appendix 32 On abelian subgroups of given exponent and small index;461
63;Appendix 33 On Hadamard 2-groups;464
64;Appendix 34 Isaacs–Passman’s theorem on character degrees;467
65;Appendix 35 Groups of Frattini class 2;473
66;Appendix 36 Hurwitz’ theorem on the composition of quadratic forms;476
67;Appendix 37 On generalized Dedekindian groups;479
68;Appendix 38 Some results of Blackburn and Macdonald;484
69;Appendix 39 Some consequences of Frobenius’ normal p-complement theorem;487
70;Appendix 40 Varia;499
71;Appendix 41 Nonabelian 2-groups all of whose minimal nonabelian subgroups have cyclic centralizers;541
72;Appendix 42 On lattice isomorphisms of p-groups of maximal class;543
73;Appendix 43 Alternate proofs of two classical theorems on solvable groups and some related results;546
74;Appendix 44 Some of Freiman’s results on finite subsets of groups with small doubling;554
75;Research problems and themes III;563
76;Author index;657
77;Subject index;659


Janko, Zvonimir
Zvonimir Janko, Heidelberg University, Germany

Berkovich, Yakov
Yakov Berkovich, University of Haifa, Israel

Yakov Berkovich, University of Haifa, Israel; Zvonimir Janko, Heidelberg University, Germany


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.