E-Book, Englisch, 512 Seiten, E-Book
Bathias / Pineau Fatigue of Materials and Structures
1. Auflage 2013
ISBN: 978-0-470-39401-4
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Fundamentals
E-Book, Englisch, 512 Seiten, E-Book
ISBN: 978-0-470-39401-4
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Fatigue and fracture result in billions of dollars of damage eachyear. This book examines the various causes of fatigueincluding crack growth, defects, temperature, environmental, andcorrosion.
Autoren/Hrsg.
Weitere Infos & Material
Preface
INTRODUCTION
A PIVOTAL ROLE OF SECONDARY OXIDE SCALE DURING HOT ROLLING AND FOR SUBSEQUENT PRODUCT QUALITY
Friction
Heat Transfer
Thermal Evolution in Hot Rolling
Secondary Scale-Related Defects
SCALE GROWTH AND FORMATION OF SUBSURFACE LAYERS
High-Temperature Oxidation of Steel
Short-Time Oxidation of Steel
Scale Growth at Continuous Cooling
Plastic Deformation of Oxide Scales
Formation and Structure of the Subsurface Layer in Aluminum Rolling
METHODOLOGY APPLIED FOR NUMERICAL CHARACTERIZATION OF OXDIE SCALE IN THERMOMECHANICAL PROCESSING
Combination of Experiments and Computer Modeling: A Key for Scale Charaterization
Prediction of Mild Steel Oxide Failure at Entry Into the Roll Gap as an Example of the Numerical Characterization of the Secondary Scale Behavior
MAKING MEASUREMENTS OF OXIDE SCALE BEHAVIOR UNDER HOT WORKING CONDITIONS
Laboratory Rolling Experiments
Multipass Laboratory Rolling Testing
Hot Tensile Testing
Hot Plane Strain Compression Testing
Hot Four-Point Bend Testing
Hot Tension Compression Testing
Bend Testing at the Room Temperature
NUMERICAL INTERPRETATION OF TEST RESULTS: A WAY TOWARD DETERMINING THE MOST CRITICAL PARAMETERS OF OXIDE SCALE BEHAVIOR
Numerical Interpretation of Modified Hot Tensile Testing
Numerical Interpretation of Plain Strain Compression Testing
Numerical Interpretation of Hot Four-Point Bend Testing
Numerical Interpretation of Hot Tension-Compression Testing
Numerical Interpretation of Bend Testing at Room Temperature
PHYSICALLY BASED FINITE ELEMENT MODEL OF THE OXIDE SCALE: ASSUMPTIONS, NUMERICAL TECHNIQUES, EXAMPLES OF PREDICTION
Multilevel Analysis
Fracture, Ductile Behavior, and Sliding
Delamination, Multilayer Scale, Scale on Roll, and Multipass Rolling
Combined Discrete/Finite Element Approach
UNDERSTANDING AND PREDICTING MICROEVENTS RELATED TO SCALE BEHAVIOR AND FORMATION OF SUBSURFACE LAYERS
Surface Scale Evolution in the Hot Rolling of Steel
Crack Development in Steel Oxide Scale Under Hot Compression
Oxide Scale Behavior and Composition Effects
Surface Finish in the Hot Rolling of Low-Carbon Steel
Analysis of Mechanical Descaling: Low-Carbon and Stainless Steel
Evaluation of Interfacial Heat Transfer During Hot Steel Rolling Assuming Scale Failure Effects
Scale Surface Roughness in Hot Rolling
Formation of Stock Surface and Subsurface Layers in Breakdown Rolling of Aluminum Alloys
OXIDE SCALE AND THROUGH-PROCESS CHARACTERIZATION OF FRICTIONAL CONDITIONS FOR THE HOT ROLLING OF STEEL: INDUSTRIAL INPUT
Background
Brief Summary of the Main Friction Laws Used in Industry
Industrial Conditions Including Descaling
Recent Developments in Friction Models
Application of Hot Lubrication
Laboratory and Industrial Measurements and Validation
Industrial Validation and Measurements
Conclusions and Way Forward