E-Book, Englisch, 204 Seiten
Barrios / Motai Predicting Vehicle Trajectory
Erscheinungsjahr 2017
ISBN: 978-1-138-03162-3
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 204 Seiten
ISBN: 978-1-138-03162-3
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
This book concentrates on improving the prediction of a vehicle’s future trajectory, particularly on non-straight paths. Having an accurate prediction of where a vehicle is heading is crucial for the system to reliably determine possible path intersections of more than one vehicle at the same time. The US DOT will be mandating that all vehicle manufacturers begin implementing V2V and V2I systems, so very soon collision avoidance systems will no longer rely on line of sight sensors, but instead will be able to take into account another vehicle’s spatial movements to determine if the future trajectories of the vehicles will intersect at the same time. Furthermore, the book introduces the reader to some improvements when predicting the future trajectory of a vehicle and presents a novel temporary solution on how to speed up the implementation of such V2V collision avoidance systems. Additionally, it evaluates whether smartphones can be used for trajectory predictions, in an attempt to populate a V2V collision avoidance system faster than a vehicle manufacturer can.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
TABLE OF CONTENTS
PREFACE
CHAPTER 1: Improving Estimation of Vehicle’s Trajectory Using Latest Global Positioning System with
Kalman Filtering
1.1. Introduction
1.2. Kalman Filter
1.3. Interacting Multiple Models Estimation
1.4. Geographical Information System
1.5. Experimental Results
1.6. Conclusions
1.7. References
CHAPTER 2: Asynchronous Heterogeneous Sensor Fusion using Dead Reckoning and Kalman Filters
2.1. Introduction
2.2. Position Estimation Techniques
2.3. Dead Reckoning with Dynamic Error (DRWDE) using Kalman Filters
2.4. Evaluation Criteria
2.5. Experimental Performance of the DRWDE System
2.6. Conclusions
2.7. References
CHAPTER 3: Can Smartphones Fill in the V2V/V2I Implementation Gap?
3.1. Introduction
3.2. Position Estimation with Kalman Filters
3.3. Position Estimation Framework Using GPS and Accelerometer Sensors
3.4. Car and Smartphone Sensors Setup for a V2V/V2I System
3.5. Evaluation Criteria
3.6. Experimental Evaluation
3.7. Conclusions
3.8. References
CHAPTER 4: Conclusions
Appendix:
A.1 Acronym Definitions
A.2 Symbol Definitions
A.3 Mathematical limitation for improved estimations
A.4 Taylor polynomial representation with its respective error
A.5 Proof of the expected value calculations
A.6 Representative Visual Basic code
A.7 Representative Matlab code