Buch, Englisch, 596 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 931 g
Hybrid Symbolic-Numeric Methods
Buch, Englisch, 596 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 931 g
ISBN: 978-3-319-88422-6
Verlag: Springer International Publishing
This book showcases powerful new hybrid methods that combine numerical and symbolic algorithms. Hybrid algorithm research is currently one of the most promising directions in the context of geosciences mathematics and computer mathematics in general.
One important topic addressed here with a broad range of applications is the solution of multivariate polynomial systems by means of resultants and Groebner bases. But that’s barely the beginning, as the authors proceed to discuss genetic algorithms, integer programming, symbolic regression, parallel computing, and many other topics.
The book is strictly goal-oriented, focusing on the solution of fundamental problems in the geosciences, such as positioning and point cloud problems. As such, at no point does it discuss purely theoretical mathematics.
"The book delivers hybrid symbolic-numeric solutions, which are a large and growing area at the boundary of mathematics and computer science." Dr. Daniel Li
chtbauZielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geologie Meteorologie, Klimatologie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Geowissenschaften Geologie GIS, Geoinformatik
- Geowissenschaften Geologie Geologie
Weitere Infos & Material
Solution of algebraic polynomial systems.- Homotopy solution of nonlinear systems.- Over and underdeterminated systems.- Simulated annealing.- Genetic algorithm.- Particle swarm optimization.- Integer programming.- Multiobjective optimization.- Approximation with radial bases functions.- Support vector machines (SVM).- Symbolic regression.- Quantile regression.- Robust regression.- Stochastic modeling.- Parallel computations.