Thenheintroducesveryclearlythescatteringofsoundbecauseofvorticity andgivesthemostrecentresultsonultrasoundpropagationthroughadis- dered?ow. V. Ostashevpresentsgeometricalacousticsinmovingmediaand theimportantpracticalproblemofsoundpropagationinturbulence(at- sphere,ocean). A. Fabrikantexaminestheplasma–hydrodynamicsanalogies includingtheresonantwave-?owinteractioninshear?ows,wavesofnegative VI Preface energyandover-re?ectionandacousticoscillatorsin?uid?ows. P. J. Mor- sondescribesthedynamicsofthecontinuousspectrumwhichoccursinshear ?ow. Theresultsareinterpretedinthecontextofin?nitedimensionalHam- toniansystemstheory. G. Chagelishvilipresentsnewlinearmechanismsof acousticwavegenerationinsmoothshear?owsusinganon-modalstudy. N. Peakepresents?uid–structureinteractionsinthepresenceofmean?ows, includingtheproblemsofinstabilityandcausality. Finally,W. Lauterborn presentsnonlinearacousticswithapplicationstosonoluminescenceandto acousticchaos. InthisCarg`eseSummerSchool,54studentsfrom12nations,and11l- turersfrom7nationsparticipated. Aknowledgements. TheSummerSchoolandthispublicationwouldnot havebeenpossiblewithout: •?nancialsupportfromtheEuropeanUnion,theCentreNationaldela RechercheScienti?que,theMinist`eredesA?airesEtrang`eres,theM- ist`eredel’EducationNationale,delaRechercheetdelaTechnologieand theGroupementdeRecherche“Turbulence”; •the guidance of Elisabeth Dubois–Violette, director of the Institut d’EtudesScienti?quesdeCarg`ese; •thehelpofChantalAriano,NathalieBedjai,BrigitteCassegrain,Pierre- EricGrossiandthewholeteaminpreparingandhostingofthisschool. Finally,wewishtothankthelecturersforgivingsomuchtimeinprep- ingthelecturesandwritingthemup,aswellasmakingthemselvesavailable fordiscussionsduringtheschool. 1 LeMans,Paris,Lyon YvesAur´egan, 2 September2001 Agn`esMaurel, 1 VincentPagneux, 3 Jean-Fran¸coisPinton. 1 Laboratoired’Acoustiquedel’Universit´eduMaine,UMRCNRS6613, Av. OMessiaen,72085LeMansCedex9,France 2 LaboratoireOndesetAcoustique,UMRCNRS7587, ESPCI,10rueVauquelin,75005Paris,France 3 LaboratoiredePhysique,UMRCNRS1325, EcoleNormaleSup´erieuredeLyon,46all´eed’Italie,69007Lyon,France Preface VII SomeofthelecturersoftheCarg`eseSchool,fromlefttoright:M. S. Howe,A. Hirschberg,P. Morrison,W. Lauterborn,V. Ostashev,A. Fabrikant,N. Peake, T. Colonius(PhotoC. Schram) SomeoftheparticipantsoftheCarg`eseSchool(PhotoC. Schram) TableofContents APrimitiveApproachtoAeroacoustics AvrahamHirschberg,ChristopheSchram. 1 1 Introduction. 1 2 FluidDynamics. 2 3 Lighthill’sAnalogy. 4 4 JetNoise. 7 5 Thermo-Acoustics. 9 6 AcousticalEnergy. 10 7 Rijke-Tube. 11 8 Vortex-SoundTheory. 14 9 ChoiceoftheGreen’sFunction. 17 10 Howe’sEnergyCorollary. 20 11 TheOpenPipeTerminationofanUn?angedPipe. 21 12 Whistler-NozzleandHumanWhistling. 25 13 Conclusion. 27 References. 28 LecturesontheTheoryofVortex–Sound MichaelS. Howe. 31 1 AerodynamicSound. 31 1. 1 Lighthill’sAcousticAnalogy(1952). 31 1. 2 AerodynamicSoundfromLow-Mach-NumberTurbulence ofUniformMeanDensity. 34 1. 3 AerodynamicSoundfromLow-Mach-NumberTurbulence ofVariableMeanDensity. 35 2 VorticityandEntropyFluctuations asSourcesofSound. 37 2. 1 TheRˆoleofVorticityinLighthill’sTheory. 37 2. 2 AcousticAnalogyinTermsoftheTotalEnthalpy. 39 2. 3 VorticityandEntropySources. 40 3 FundamentalSolutionsoftheWaveEquation. 43 3. 1 TheHelmholtzEquation. 43 3. 2 TheWaveEquation. 46 4 GeneralSolutionoftheInhomogeneousWaveEquation. 47 4. 1 GeneralSolutionintheFrequency-Domain. 47 X TableofContents 4. 2 GeneralSolutionintheTime-Domain. 49 5 CompactGreen’sFunctions.
Auregan / Pinton / Maurel
Sound-Flow Interactions jetzt bestellen!
Weitere Infos & Material
A Primitive Approach to Aeroacoustics.- Lectures on the Theory of Vortex-Sound.- Sound—Vortex Interaction in Infinite Media.- Geometrical Acoustics in Moving Media.- Sound Propagation and Scattering in Random Moving Media.- Plasma—Hydrodynamic Analogy for Waves and Vortices in Shear Flows.- New Linear Mechanisms of Acoustic Wave Generation in Smooth Shear Flows (Nonmodal Study).- Singular Eigenfunctions and an Integral Transform for Shear Flow.- Structural Acoustics with Mean Flow.- Nonlinear Acoustics and Acoustic Chaos.