From Biomass to Chemicals and Fuels
E-Book, Englisch, 456 Seiten
ISBN: 978-3-11-026028-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers in chemistry, chemical engineering and biotechnology, Chemical industries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;13
2;List of Contributing Authors;15
3;1 A new concept of biorefinery comes into operation: the EuroBioRef concept;19
3.1;1.1 General context;19
3.1.1;1.1.1 Toward a bio-based economy;19
3.1.2;1.1.2 Biorefineries and the level of integration;20
3.2;1.2 The EuroBioRef biorefinery concept, objectives, and methodology;21
3.2.1;1.2.1 Flexibility, adaptability, and multidimensional integration of the EuroBioRef project;21
3.2.2;1.2.2 The concept principles of EuroBioRef;23
3.2.3;1.2.3 The objectives of the EuroBioRef project;25
3.2.4;1.2.4 The EuroBioRef approach to reach the objectives;27
3.2.5;1.2.5 EuroBioRef innovation and expected results (Fig. 1.7);29
3.2.6;1.2.6 S/T methodology and associated subprojects;30
3.3;1.3 Main achievements of the first year of the project;32
3.4;Acknowledgements;35
3.5;References;35
4;2 Refinery of the future: feedstock, processes, products;37
4.1;2.1 Introduction;37
4.2;2.2 Competition;37
4.3;2.3 Impact of legislation;40
4.4;2.4 Regional impacts;41
4.5;2.5 Biorefineries – definitions and examples;41
4.5.1;2.5.1 Arkema’s castor oil-based biorefinery;43
4.5.2;2.5.2 Elevance Renewable Sciences oil-based biorefinery;44
4.5.3;2.5.3 Vandeputte oil-based biorefinery;46
4.5.4;2.5.4 The "Les Sohettes" biorefinery;47
4.5.5;2.5.5 The starch-based Cargill biorefinery;47
4.5.6;2.5.6 Other biorefineries;47
4.6;2.6 Processing units;49
4.7;2.7 Capital cost;57
4.8;2.8 Conclusions;65
4.9;Acknowledgements;65
4.10;References;65
5;3 The terrestrial biomass: formation and properties (crops and residual biomass);67
5.1;3.1 Residual biomass;67
5.1.1;3.1.1 Straw;67
5.1.2;3.1.2 Wood;69
5.2;3.2 The oil crops;71
5.2.1;3.2.1 Castor seed (Ricinus communis L, Euphorbiaceae);71
5.2.2;3.2.2 Crambe (Crambe abysinica Hochst ex R.E. Fries, Brassicaceae/Crucifera);73
5.2.3;3.2.3 Cuphea (Cuphea sp., Lythraceae);77
5.2.4;3.2.4 Lesquerella (Lesquerella fendlheri L, Communis L, Cruciferae/Brassicaceae);79
5.2.5;3.2.5 Lunaria (Lunaria annua L, Brassicaciae/Crusiferae);80
5.2.6;3.2.6 Safflower (Carthamus tinctorius L, Compositae);82
5.3;3.3 The lignocellulosic crops;84
5.3.1;3.3.1 Cardoon (Cynara cardunculus L, Compositae);84
5.3.2;3.3.2 Giant reed;86
5.3.3;3.3.3 Miscanthus (Miscanthus x giganteus, Poaceae);90
5.3.4;3.3.4 Switchgrass (Panicum virgatum L, Poaceae);92
5.4;References;94
6;4 Production of aquatic biomass and extraction of bio-oil;99
6.1;4.1 Introduction;99
6.2;4.2 Characterization of aquatic biomass and its cultivation;100
6.2.1;4.2.1 Macro-algae;100
6.2.2;4.2.2 Micro-algae;102
6.3;4.3 Harvesting of aquatic biomass;105
6.3.1;4.3.1 Macro-algae;105
6.3.2;4.3.2 Micro-algae;106
6.4;4.4 Composition of aquatic biomass;107
6.5;4.5 Bio-oil content of aquatic biomass;109
6.6;4.6 The quality of bio-oil;110
6.7;4.7 Technologies for algal oil and chemicals extraction;112
6.7.1;4.7.1 Conventional solvent extraction;113
6.7.2;4.7.2 Supercritical fluid extraction (SFE);113
6.7.3;4.7.3 Mechanical extraction;114
6.7.4;4.7.4 Biological extraction;114
6.8;4.8 Conclusions;114
6.9;References;115
7;5 Biomass pretreatment: separation of cellulose, hemicellulose, and lignin - existing technologies and perspectives;119
7.1;5.1 Introduction;119
7.2;5.2 Biomass composition;119
7.3;5.3 Physical and physicochemical pretreatments of biomass;120
7.3.1;5.3.1 Mechanical pretreatments;120
7.3.2;5.3.2 Irradiation;121
7.3.3;5.3.3 Pyrolysis;122
7.3.4;5.3.4 Torrefaction;123
7.3.5;5.3.5 Steam explosion and liquid hot water;123
7.3.6;5.3.6 Ammonia fiber explosion;125
7.3.7;5.3.7 CO2 explosion;126
7.4;5.4 Chemical pretreatments;127
7.4.1;5.4.1 Alkaline hydrolysis;127
7.4.2;5.4.2 Acid hydrolysis;129
7.4.3;5.4.3 Ozonolysis;130
7.4.4;5.4.4 Organosolv processes;131
7.4.5;5.4.5 Ionic liquid pretreatments;132
7.5;5.5 Conclusions and perspectives;132
7.6;References;135
8;6 Conversion of cellulose and hemicellulose into platform molecules: chemical routes;141
8.1;6.1 Introduction;141
8.2;6.2 Selective transformation of sugars to platform molecules;142
8.2.1;6.2.1 Dehydration of hexoses into furan compounds: 5-HMF and derivates;142
8.2.2;6.2.2 Dehydration of pentoses into furans: synthesis of furfural and derivatives;148
8.3;6.3 Catalytic routes for the aqueous-phase conversion of sugars and derivatives into liquid hydrocarbons for transportation fuels;150
8.3.1;6.3.1 Conversion of HMF and furfural platform chemicals into hydrocarbon fuels;150
8.3.2;6.3.2 Aqueous phase reforming of sugars;152
8.3.3;6.3.3 Conversion of levulinic acid platform into hydrocarbon fuels;154
8.4;6.4 Future outlook;154
8.5;References;156
9;7 Conversion of cellulose, hemicellulose, and lignin into platform molecules: biotechnological approach;159
9.1;7.1 History of bioethanol from wood;159
9.2;7.2 Case history: 40 years experience from running a biorefinery;161
9.2.1;7.2.1 From commodity pulp to a range of specialty chemicals;161
9.2.2;7.2.2 Profitability from a range of co-products;163
9.2.3;7.2.3 Composition of feedstock is given - demand is never in balance;165
9.2.4;7.2.4 Continuous need for product development;165
9.2.5;7.2.5 High-value biomass for products - low-value organic waste for energy;165
9.2.6;7.2.6 Long-term commitment to sustainability has given results;166
9.3;7.3 The sugar platform - biotechnological approach;168
9.3.1;7.3.1 Less-expensive feedstocks for low-value products - high-value coproducts from costly feedstocks;170
9.3.2;7.3.2 The sugar platform process train and the major challenges;171
9.3.3;7.3.3 The challenge of making chemicals and materials from lignin;175
9.3.4;7.3.4 Fermentation, distilling, and dewatering;176
9.4;7.4 The BALI pretreatment and separation process;178
9.4.1;7.4.1 The BALI process - technical description;178
9.4.2;7.4.2 The BALI process - beneficial enzymatic hydrolysis;178
9.4.3;7.4.3 The BALI process - high-value products from all three main components of the lignocellulosic feedstock;180
9.5;7.5 Pilot plant for the BALI process;183
9.6;Acknowledgements;183
9.7;References;183
10;8 Conversion of lignin: chemical technologies and biotechnologies - oxidative strategies in lignin upgrade;185
10.1;8.1 Introduction;185
10.2;8.2 Lignin structure, pretreatment, and use in the biorefinery;187
10.2.1;8.2.1 Lignin structure;187
10.2.2;8.2.2 Lignin pretreatment;189
10.2.3;8.2.3 Potential sources of biorefinery lignin;192
10.2.4;8.2.4 The use of lignin in current and future biorefinery schemes;196
10.3;8.3 Oxidative strategies in lignin chemistry: a new environmentally friendly approach for the valorization of lignin;199
10.3.1;8.3.1 Oxidation of lignin by biocatalysis processes;200
10.3.2;8.3.2 Catalysis;208
10.4;8.4 Concluding remarks;218
10.5;References;220
11;9 Process development and metabolic engineering for bioethanol production from lignocellulosic biomass;225
11.1;9.1 Introduction;225
11.2;9.2 Pretreatment;226
11.3;9.3 Enzymatic hydrolysis and detoxification;226
11.3.1;9.3.1 Enzymatic hydrolysis;227
11.3.2;9.3.2 Fermentation inhibitors;228
11.3.3;9.3.3 Detoxification;229
11.4;9.4 Fermentation;230
11.4.1;9.4.1 Separate hydrolysis and fermentation (SHF);230
11.4.2;9.4.2 Simultaneous saccharification and fermentation (SSF);231
11.4.3;9.4.3 Simultaneous saccharification and co-fermentation (SSCF);232
11.4.4;9.4.4 Consolidated bioprocessing (CBP);232
11.5;9.5 Microbial biocatalysts;233
11.5.1;9.5.1 Escherichia coli;234
11.5.2;9.5.2 Z. mobilis;235
11.5.3;9.5.3 Other bacteria;236
11.5.4;9.5.4 S. cerevisiae;236
11.5.5;9.5.5 Other yeasts;242
11.6;References;243
12;10 Catalytic conversion of biosourced raw materials: homogeneous catalysis;249
12.1;10.1 Lignocellulosic biomass;250
12.1.1;10.1.1 Acid-catalyzed fractionation of lignocellulosic biomass;251
12.1.2;10.1.2 Homogeneously catalyzed conversion of cellulose and related polysaccharides;252
12.1.3;10.1.3 Synergistic effect between homogeneous and heterogeneous catalysis;257
12.2;10.2 Vegetable oils;261
12.2.1;10.2.1 Catalytic conversion of renewable alkenes;262
12.2.2;10.2.2 Catalytic conversion of glycerol;270
12.3;10.3 Conclusion;273
12.4;References;275
13;11 Catalytic conversion of oils extracted from seeds: from polyunsaturated long chains to functional molecules;281
13.1;11.1 Introduction;281
13.2;11.2 Reactions occurring on the carboxyl group of fatty acids/esters;281
13.2.1;11.2.1 Hydrolysis;281
13.2.2;11.2.2 Transesterification;283
13.2.3;11.2.3 Esterification;284
13.2.4;11.2.4 Amidation;285
13.2.5;11.2.5 Reduction of the carboxyl function;286
13.2.6;11.2.6 Polycondensation;287
13.3;11.3 Reactions occurring on the double bond(s) (unsaturation) of fatty acids/esters;288
13.3.1;11.3.1 Hydrogenation;288
13.3.2;11.3.2 Dimerization;289
13.3.3;11.3.3 Epoxidation;290
13.3.4;11.3.4 Metathesis;292
13.3.5;11.3.5 Isomerization;294
13.4;11.4 Conclusion;294
13.5;References;295
14;12 Heterogeneous catalysis applied to the conversion of biogenic substances, platform molecules, and oils;297
14.1;12.1 Introduction;297
14.2;12.2 Use of heterogeneous catalysis in the conversion of biogenic platform molecules;298
14.2.1;12.2.1 Conversion of terpenes;299
14.3;12.3 Conversion of lipids: the established technology;305
14.4;12.4 Innovation in the production of FAMEs;306
14.4.1;12.4.1 Hydrolytic esterification of lipids;307
14.4.2;12.4.2 Water-free simultaneous transesterification of lipids and esterification of FFAs;307
14.4.3;12.4.3 The quality of bio-oil;308
14.5;12.5 Hydroprocessing;308
14.6;12.6 Glycerol valorization;310
14.7;References;313
15;13 Biomass gasification: gas production and cleaning for diverse applications - CHP and chemical syntheses;315
15.1;13.1 Introduction to biomass gasification;315
15.1.1;13.1.1 Biomass as a feedstock for thermochemical processes;316
15.1.2;13.1.2 Basics of biomass gasification;319
15.1.3;13.1.3 Types of gasifiers;320
15.2;13.2 Thermodynamics of biomass gasification;323
15.3;13.3 Syngas quality for CHP systems;325
15.4;13.4 Syngas quality of chemical syntheses;326
15.4.1;13.4.1 Gas cleaning systems for biomass syngas impurities;326
15.5;References;334
16;14 From Syngas to fuels and chemicals: chemical and biotechnological routes;337
16.1;14.1 Introduction;337
16.2;14.2 Uses of syngas;338
16.2.1;14.2.1 Syngas as a chemical feedstock;338
16.2.2;14.2.2 Syngas as a fuel;341
16.2.3;14.2.3 Diesel fuels from syngas: the Fischer-Tropsch process;341
16.3;14.3 The exploitation of the Fischer-Tropsch reaction in a biorefinery;347
16.4;14.4 Can syngas undergo fermentation?;349
16.5;References;350
17;15 Conversion of biomass to fuels and chemicals via thermochemical processes;351
17.1;15.1 Introduction to biomass thermochemical conversion processes;351
17.1.1;15.1.1 Gasification;351
17.1.2;15.1.2 Biocarbonization;353
17.1.3;15.1.3 Liquefaction;353
17.2;15.2 Pyrolysis;354
17.2.1;15.2.1 Process overview;354
17.2.2;15.2.2 Pyrolysis reactors;356
17.2.3;15.2.3 Drawbacks of thermal bio-oil;358
17.3;15.3 Biomass catalytic pyrolysis;359
17.3.1;15.3.1 Overview of the biomass catalytic pyrolysis process;359
17.3.2;15.3.2 Catalyst effects on bio-oil yield and quality;360
17.4;15.4 Recent developments in bio-oil upgrading for fuels production;367
17.5;15.5 Conclusions;372
17.6;References;374
18;16 Cellulosic ethanol production in northern Sweden - a case study of economic performance and GHG emissions;381
18.1;16.1 Introduction;381
18.2;16.2 The pursuit of cellulosic ethanol in Sweden;382
18.3;16.4 Modeling the conversion process;384
18.4;16.5 The Swedish market for forest products;384
18.4.1;16.5.1 Quantifying feedstock availability;385
18.4.2;16.5.2 The marginal cost of feedstocks at Skellefteå;386
18.4.3;16.5.4 Integrating Skellefteå feedstock data into the cost and GHG models;388
18.5;16.6 Results;389
18.6;16.7 Conclusions;393
18.7;References;393
19;17 Anaerobic fermentation: biogas from waste – the basic science;395
19.1;17.1 Introduction;395
19.1.1;17.1.1 The aerobic and anaerobic processes of FVGs;395
19.2;17.2 The structure of the starting waste wet biomass;397
19.2.1;17.2.1 Cellulose;398
19.2.2;17.2.2 Hemicellulose;399
19.2.3;17.2.3 Lignin;399
19.2.4;17.2.4 Pectin;400
19.2.5;17.2.5 Starch;400
19.2.6;17.2.6 Lipids;400
19.2.7;17.2.7 Proteins;402
19.3;17.3 Biogas production;402
19.3.1;17.3.1 Anaerobic digestion: natura docet;402
19.3.2;17.3.2 Hydrolytic bacteria and acidogenesis;404
19.4;17.4 Biogas formation from waste: phases and reactions;406
20;17.4.1 [FeFe]H2ase;406
21;17.4.2 [FeS]H2-ase;407
22;17.4.3 [NiFe]H2ase and [Fe-Ni-Se]ase;408
22.1;17.4.4 Molybdenum-iron-containing N2-ase;409
22.2;17.5 Methanogenic bacteria;409
22.2.1;17.5.1 Methanogenesis;411
22.2.2;17.5.2 The effect of the concentration of Ni, Fe, and Co on the production of H2 and CH4;413
22.3;References;415
23;18 From lab-scale to full-scale biogas plants;423
23.1;18.1 Laboratory-scale biomethane potential tests;423
23.2;18.2 Pretreatment of biomasses;432
23.3;18.3 Design criteria;435
23.4;18.4 Types of reactors and possible configurations of biogas plants;441
23.5;18.5 Biogas from wastewaters;446
23.6;References;452
24;Index;455