Aresta / Dibenedetto / Dumeignil | Biorefinery: From Biomass to Chemicals and Fuels | E-Book | sack.de
E-Book

E-Book, Englisch, 456 Seiten

Aresta / Dibenedetto / Dumeignil Biorefinery: From Biomass to Chemicals and Fuels

From Biomass to Chemicals and Fuels

E-Book, Englisch, 456 Seiten

ISBN: 978-3-11-026028-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This book provides an introduction to the basic science and technologies for the conversion of biomass (terrestrial and aquatic) into chemicals and fuels, as well as an overview of innovations in the field. The entire value chain for converting raw materials into platform molecules and their transformation into final products are presented in detail. Both cellulosic and oleaginous biomass are considered. The book contains contributions by both academic scientists and industrial technologists so that each topic combines state-of-the-art scientific knowledge with innovative technologies relevant to chemical industries. Selected topics include: - Refinery of the future: feedstock, processes, products - The terrestrial and aquatic biomass production and properties - Chemical technologies and biotechnologies for the conversion of cellulose, hemicellulose, lignine, algae, residual biomass - Thermal, catalytic and enzymatic conversion of biomass - Production of chemicals, polymeric materials, fuels (biogas, biodiesel, bioethanol, biohydrogen) - Policy aspects of biomass product chains - LCA applied to the energetic, economic and environmental evaluation of the production of fuels from biomass: ethanol, biooil and biodiesel, biogas, biohydrogen
Aresta / Dibenedetto / Dumeignil Biorefinery: From Biomass to Chemicals and Fuels jetzt bestellen!

Zielgruppe


Researchers in chemistry, chemical engineering and biotechnology, Chemical industries

Weitere Infos & Material


1;Preface;13
2;List of Contributing Authors;15
3;1 A new concept of biorefinery comes into operation: the EuroBioRef concept;19
3.1;1.1 General context;19
3.1.1;1.1.1 Toward a bio-based economy;19
3.1.2;1.1.2 Biorefineries and the level of integration;20
3.2;1.2 The EuroBioRef biorefinery concept, objectives, and methodology;21
3.2.1;1.2.1 Flexibility, adaptability, and multidimensional integration of the EuroBioRef project;21
3.2.2;1.2.2 The concept principles of EuroBioRef;23
3.2.3;1.2.3 The objectives of the EuroBioRef project;25
3.2.4;1.2.4 The EuroBioRef approach to reach the objectives;27
3.2.5;1.2.5 EuroBioRef innovation and expected results (Fig. 1.7);29
3.2.6;1.2.6 S/T methodology and associated subprojects;30
3.3;1.3 Main achievements of the first year of the project;32
3.4;Acknowledgements;35
3.5;References;35
4;2 Refinery of the future: feedstock, processes, products;37
4.1;2.1 Introduction;37
4.2;2.2 Competition;37
4.3;2.3 Impact of legislation;40
4.4;2.4 Regional impacts;41
4.5;2.5 Biorefineries – definitions and examples;41
4.5.1;2.5.1 Arkema’s castor oil-based biorefinery;43
4.5.2;2.5.2 Elevance Renewable Sciences oil-based biorefinery;44
4.5.3;2.5.3 Vandeputte oil-based biorefinery;46
4.5.4;2.5.4 The "Les Sohettes" biorefinery;47
4.5.5;2.5.5 The starch-based Cargill biorefinery;47
4.5.6;2.5.6 Other biorefineries;47
4.6;2.6 Processing units;49
4.7;2.7 Capital cost;57
4.8;2.8 Conclusions;65
4.9;Acknowledgements;65
4.10;References;65
5;3 The terrestrial biomass: formation and properties (crops and residual biomass);67
5.1;3.1 Residual biomass;67
5.1.1;3.1.1 Straw;67
5.1.2;3.1.2 Wood;69
5.2;3.2 The oil crops;71
5.2.1;3.2.1 Castor seed (Ricinus communis L, Euphorbiaceae);71
5.2.2;3.2.2 Crambe (Crambe abysinica Hochst ex R.E. Fries, Brassicaceae/Crucifera);73
5.2.3;3.2.3 Cuphea (Cuphea sp., Lythraceae);77
5.2.4;3.2.4 Lesquerella (Lesquerella fendlheri L, Communis L, Cruciferae/Brassicaceae);79
5.2.5;3.2.5 Lunaria (Lunaria annua L, Brassicaciae/Crusiferae);80
5.2.6;3.2.6 Safflower (Carthamus tinctorius L, Compositae);82
5.3;3.3 The lignocellulosic crops;84
5.3.1;3.3.1 Cardoon (Cynara cardunculus L, Compositae);84
5.3.2;3.3.2 Giant reed;86
5.3.3;3.3.3 Miscanthus (Miscanthus x giganteus, Poaceae);90
5.3.4;3.3.4 Switchgrass (Panicum virgatum L, Poaceae);92
5.4;References;94
6;4 Production of aquatic biomass and extraction of bio-oil;99
6.1;4.1 Introduction;99
6.2;4.2 Characterization of aquatic biomass and its cultivation;100
6.2.1;4.2.1 Macro-algae;100
6.2.2;4.2.2 Micro-algae;102
6.3;4.3 Harvesting of aquatic biomass;105
6.3.1;4.3.1 Macro-algae;105
6.3.2;4.3.2 Micro-algae;106
6.4;4.4 Composition of aquatic biomass;107
6.5;4.5 Bio-oil content of aquatic biomass;109
6.6;4.6 The quality of bio-oil;110
6.7;4.7 Technologies for algal oil and chemicals extraction;112
6.7.1;4.7.1 Conventional solvent extraction;113
6.7.2;4.7.2 Supercritical fluid extraction (SFE);113
6.7.3;4.7.3 Mechanical extraction;114
6.7.4;4.7.4 Biological extraction;114
6.8;4.8 Conclusions;114
6.9;References;115
7;5 Biomass pretreatment: separation of cellulose, hemicellulose, and lignin - existing technologies and perspectives;119
7.1;5.1 Introduction;119
7.2;5.2 Biomass composition;119
7.3;5.3 Physical and physicochemical pretreatments of biomass;120
7.3.1;5.3.1 Mechanical pretreatments;120
7.3.2;5.3.2 Irradiation;121
7.3.3;5.3.3 Pyrolysis;122
7.3.4;5.3.4 Torrefaction;123
7.3.5;5.3.5 Steam explosion and liquid hot water;123
7.3.6;5.3.6 Ammonia fiber explosion;125
7.3.7;5.3.7 CO2 explosion;126
7.4;5.4 Chemical pretreatments;127
7.4.1;5.4.1 Alkaline hydrolysis;127
7.4.2;5.4.2 Acid hydrolysis;129
7.4.3;5.4.3 Ozonolysis;130
7.4.4;5.4.4 Organosolv processes;131
7.4.5;5.4.5 Ionic liquid pretreatments;132
7.5;5.5 Conclusions and perspectives;132
7.6;References;135
8;6 Conversion of cellulose and hemicellulose into platform molecules: chemical routes;141
8.1;6.1 Introduction;141
8.2;6.2 Selective transformation of sugars to platform molecules;142
8.2.1;6.2.1 Dehydration of hexoses into furan compounds: 5-HMF and derivates;142
8.2.2;6.2.2 Dehydration of pentoses into furans: synthesis of furfural and derivatives;148
8.3;6.3 Catalytic routes for the aqueous-phase conversion of sugars and derivatives into liquid hydrocarbons for transportation fuels;150
8.3.1;6.3.1 Conversion of HMF and furfural platform chemicals into hydrocarbon fuels;150
8.3.2;6.3.2 Aqueous phase reforming of sugars;152
8.3.3;6.3.3 Conversion of levulinic acid platform into hydrocarbon fuels;154
8.4;6.4 Future outlook;154
8.5;References;156
9;7 Conversion of cellulose, hemicellulose, and lignin into platform molecules: biotechnological approach;159
9.1;7.1 History of bioethanol from wood;159
9.2;7.2 Case history: 40 years experience from running a biorefinery;161
9.2.1;7.2.1 From commodity pulp to a range of specialty chemicals;161
9.2.2;7.2.2 Profitability from a range of co-products;163
9.2.3;7.2.3 Composition of feedstock is given - demand is never in balance;165
9.2.4;7.2.4 Continuous need for product development;165
9.2.5;7.2.5 High-value biomass for products - low-value organic waste for energy;165
9.2.6;7.2.6 Long-term commitment to sustainability has given results;166
9.3;7.3 The sugar platform - biotechnological approach;168
9.3.1;7.3.1 Less-expensive feedstocks for low-value products - high-value coproducts from costly feedstocks;170
9.3.2;7.3.2 The sugar platform process train and the major challenges;171
9.3.3;7.3.3 The challenge of making chemicals and materials from lignin;175
9.3.4;7.3.4 Fermentation, distilling, and dewatering;176
9.4;7.4 The BALI pretreatment and separation process;178
9.4.1;7.4.1 The BALI process - technical description;178
9.4.2;7.4.2 The BALI process - beneficial enzymatic hydrolysis;178
9.4.3;7.4.3 The BALI process - high-value products from all three main components of the lignocellulosic feedstock;180
9.5;7.5 Pilot plant for the BALI process;183
9.6;Acknowledgements;183
9.7;References;183
10;8 Conversion of lignin: chemical technologies and biotechnologies - oxidative strategies in lignin upgrade;185
10.1;8.1 Introduction;185
10.2;8.2 Lignin structure, pretreatment, and use in the biorefinery;187
10.2.1;8.2.1 Lignin structure;187
10.2.2;8.2.2 Lignin pretreatment;189
10.2.3;8.2.3 Potential sources of biorefinery lignin;192
10.2.4;8.2.4 The use of lignin in current and future biorefinery schemes;196
10.3;8.3 Oxidative strategies in lignin chemistry: a new environmentally friendly approach for the valorization of lignin;199
10.3.1;8.3.1 Oxidation of lignin by biocatalysis processes;200
10.3.2;8.3.2 Catalysis;208
10.4;8.4 Concluding remarks;218
10.5;References;220
11;9 Process development and metabolic engineering for bioethanol production from lignocellulosic biomass;225
11.1;9.1 Introduction;225
11.2;9.2 Pretreatment;226
11.3;9.3 Enzymatic hydrolysis and detoxification;226
11.3.1;9.3.1 Enzymatic hydrolysis;227
11.3.2;9.3.2 Fermentation inhibitors;228
11.3.3;9.3.3 Detoxification;229
11.4;9.4 Fermentation;230
11.4.1;9.4.1 Separate hydrolysis and fermentation (SHF);230
11.4.2;9.4.2 Simultaneous saccharification and fermentation (SSF);231
11.4.3;9.4.3 Simultaneous saccharification and co-fermentation (SSCF);232
11.4.4;9.4.4 Consolidated bioprocessing (CBP);232
11.5;9.5 Microbial biocatalysts;233
11.5.1;9.5.1 Escherichia coli;234
11.5.2;9.5.2 Z. mobilis;235
11.5.3;9.5.3 Other bacteria;236
11.5.4;9.5.4 S. cerevisiae;236
11.5.5;9.5.5 Other yeasts;242
11.6;References;243
12;10 Catalytic conversion of biosourced raw materials: homogeneous catalysis;249
12.1;10.1 Lignocellulosic biomass;250
12.1.1;10.1.1 Acid-catalyzed fractionation of lignocellulosic biomass;251
12.1.2;10.1.2 Homogeneously catalyzed conversion of cellulose and related polysaccharides;252
12.1.3;10.1.3 Synergistic effect between homogeneous and heterogeneous catalysis;257
12.2;10.2 Vegetable oils;261
12.2.1;10.2.1 Catalytic conversion of renewable alkenes;262
12.2.2;10.2.2 Catalytic conversion of glycerol;270
12.3;10.3 Conclusion;273
12.4;References;275
13;11 Catalytic conversion of oils extracted from seeds: from polyunsaturated long chains to functional molecules;281
13.1;11.1 Introduction;281
13.2;11.2 Reactions occurring on the carboxyl group of fatty acids/esters;281
13.2.1;11.2.1 Hydrolysis;281
13.2.2;11.2.2 Transesterification;283
13.2.3;11.2.3 Esterification;284
13.2.4;11.2.4 Amidation;285
13.2.5;11.2.5 Reduction of the carboxyl function;286
13.2.6;11.2.6 Polycondensation;287
13.3;11.3 Reactions occurring on the double bond(s) (unsaturation) of fatty acids/esters;288
13.3.1;11.3.1 Hydrogenation;288
13.3.2;11.3.2 Dimerization;289
13.3.3;11.3.3 Epoxidation;290
13.3.4;11.3.4 Metathesis;292
13.3.5;11.3.5 Isomerization;294
13.4;11.4 Conclusion;294
13.5;References;295
14;12 Heterogeneous catalysis applied to the conversion of biogenic substances, platform molecules, and oils;297
14.1;12.1 Introduction;297
14.2;12.2 Use of heterogeneous catalysis in the conversion of biogenic platform molecules;298
14.2.1;12.2.1 Conversion of terpenes;299
14.3;12.3 Conversion of lipids: the established technology;305
14.4;12.4 Innovation in the production of FAMEs;306
14.4.1;12.4.1 Hydrolytic esterification of lipids;307
14.4.2;12.4.2 Water-free simultaneous transesterification of lipids and esterification of FFAs;307
14.4.3;12.4.3 The quality of bio-oil;308
14.5;12.5 Hydroprocessing;308
14.6;12.6 Glycerol valorization;310
14.7;References;313
15;13 Biomass gasification: gas production and cleaning for diverse applications - CHP and chemical syntheses;315
15.1;13.1 Introduction to biomass gasification;315
15.1.1;13.1.1 Biomass as a feedstock for thermochemical processes;316
15.1.2;13.1.2 Basics of biomass gasification;319
15.1.3;13.1.3 Types of gasifiers;320
15.2;13.2 Thermodynamics of biomass gasification;323
15.3;13.3 Syngas quality for CHP systems;325
15.4;13.4 Syngas quality of chemical syntheses;326
15.4.1;13.4.1 Gas cleaning systems for biomass syngas impurities;326
15.5;References;334
16;14 From Syngas to fuels and chemicals: chemical and biotechnological routes;337
16.1;14.1 Introduction;337
16.2;14.2 Uses of syngas;338
16.2.1;14.2.1 Syngas as a chemical feedstock;338
16.2.2;14.2.2 Syngas as a fuel;341
16.2.3;14.2.3 Diesel fuels from syngas: the Fischer-Tropsch process;341
16.3;14.3 The exploitation of the Fischer-Tropsch reaction in a biorefinery;347
16.4;14.4 Can syngas undergo fermentation?;349
16.5;References;350
17;15 Conversion of biomass to fuels and chemicals via thermochemical processes;351
17.1;15.1 Introduction to biomass thermochemical conversion processes;351
17.1.1;15.1.1 Gasification;351
17.1.2;15.1.2 Biocarbonization;353
17.1.3;15.1.3 Liquefaction;353
17.2;15.2 Pyrolysis;354
17.2.1;15.2.1 Process overview;354
17.2.2;15.2.2 Pyrolysis reactors;356
17.2.3;15.2.3 Drawbacks of thermal bio-oil;358
17.3;15.3 Biomass catalytic pyrolysis;359
17.3.1;15.3.1 Overview of the biomass catalytic pyrolysis process;359
17.3.2;15.3.2 Catalyst effects on bio-oil yield and quality;360
17.4;15.4 Recent developments in bio-oil upgrading for fuels production;367
17.5;15.5 Conclusions;372
17.6;References;374
18;16 Cellulosic ethanol production in northern Sweden - a case study of economic performance and GHG emissions;381
18.1;16.1 Introduction;381
18.2;16.2 The pursuit of cellulosic ethanol in Sweden;382
18.3;16.4 Modeling the conversion process;384
18.4;16.5 The Swedish market for forest products;384
18.4.1;16.5.1 Quantifying feedstock availability;385
18.4.2;16.5.2 The marginal cost of feedstocks at Skellefteå;386
18.4.3;16.5.4 Integrating Skellefteå feedstock data into the cost and GHG models;388
18.5;16.6 Results;389
18.6;16.7 Conclusions;393
18.7;References;393
19;17 Anaerobic fermentation: biogas from waste – the basic science;395
19.1;17.1 Introduction;395
19.1.1;17.1.1 The aerobic and anaerobic processes of FVGs;395
19.2;17.2 The structure of the starting waste wet biomass;397
19.2.1;17.2.1 Cellulose;398
19.2.2;17.2.2 Hemicellulose;399
19.2.3;17.2.3 Lignin;399
19.2.4;17.2.4 Pectin;400
19.2.5;17.2.5 Starch;400
19.2.6;17.2.6 Lipids;400
19.2.7;17.2.7 Proteins;402
19.3;17.3 Biogas production;402
19.3.1;17.3.1 Anaerobic digestion: natura docet;402
19.3.2;17.3.2 Hydrolytic bacteria and acidogenesis;404
19.4;17.4 Biogas formation from waste: phases and reactions;406
20;17.4.1 [FeFe]H2ase;406
21;17.4.2 [FeS]H2-ase;407
22;17.4.3 [NiFe]H2ase and [Fe-Ni-Se]ase;408
22.1;17.4.4 Molybdenum-iron-containing N2-ase;409
22.2;17.5 Methanogenic bacteria;409
22.2.1;17.5.1 Methanogenesis;411
22.2.2;17.5.2 The effect of the concentration of Ni, Fe, and Co on the production of H2 and CH4;413
22.3;References;415
23;18 From lab-scale to full-scale biogas plants;423
23.1;18.1 Laboratory-scale biomethane potential tests;423
23.2;18.2 Pretreatment of biomasses;432
23.3;18.3 Design criteria;435
23.4;18.4 Types of reactors and possible configurations of biogas plants;441
23.5;18.5 Biogas from wastewaters;446
23.6;References;452
24;Index;455


Michele Aresta, University of Bari, Italy; Angela Dibendetto, University of Bari, Italy; Franck Dumeignil, University of Lille - Nord de France, Villeneuve d’Ascq, France.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.