Aimé / Coradin | Bionanocomposites | Buch | 978-1-118-94222-2 | sack.de

Buch, Englisch, 400 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 658 g

Aimé / Coradin

Bionanocomposites

Integrating Biological Processes for Bioinspired Nanotechnologies
1. Auflage 2017
ISBN: 978-1-118-94222-2
Verlag: Wiley

Integrating Biological Processes for Bioinspired Nanotechnologies

Buch, Englisch, 400 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 658 g

ISBN: 978-1-118-94222-2
Verlag: Wiley


Beginning with a general overview of nanocomposites, Bionanocomposites: Integrating Biological Processes for Bio-inspired Nanotechnologies details the systems available in nature (nucleic acids, proteins, carbohydrates, lipids) that can be integrated within suitable inorganic matrices for specific applications.  Describing the relationship between architecture, hierarchy and function, this book aims at pointing out how bio-systems can be key components of nanocomposites. The text then reviews the design principles, structures, functions and applications of bionanocomposites. It also includes a section presenting related technical methods to help readers identify and understand the most widely used analytical tools such as mass spectrometry, calorimetry, and impedance spectroscopy, among others.

Aimé / Coradin Bionanocomposites jetzt bestellen!

Weitere Infos & Material


List of Contributors xv

1 What Are Bionanocomposites? 1
Agathe Urvoas, Marie Valerio-Lepiniec, Philippe Minard and Cordt Zollfrank

1.1 Introduction 1

1.2 A Molecular Perspective: Why Biological Macromolecules? 3

1.3 Challenges for Bionanocomposites 3

References 6

2 Molecular Architecture of Living Matter 9

2.1 Nucleic Acids 11
Enora Prado, Mónika Ádok-Sipiczki and Corinne Nardin

2.1.1 Introduction: A Bit of History 11

2.1.2 Definition and Structure 12

2.1.2.1 Nomenclature 12

2.1.2.2 Structure 13

2.1.3 DNA and RNA Functions 15

2.1.3.1 Introduction 15

2.1.3.2 Transcription–Translation Process 16

2.1.3.3 Replication Process 18

2.1.4 Specific Secondary Structures 19

2.1.4.1 Watson–Crick H-Bonds 19

2.1.4.1.1 Stem-Loop 19

2.1.4.1.2 Kissing Complex 20

2.1.4.2 Other Kinds of H-Bonding 21

2.1.4.2.1 G-Quartets 21

2.1.4.2.2 i-Motifs 23

2.1.5 Stability 23

2.1.6 Conclusion 25

References 25

2.2 Lipids 29
Carole Aimé and Thibaud Coradin

2.2.1 Lipids Self-Assembly 29

2.2.2 Structural Diversity of Lipids 30

2.2.2.1 Fatty Acyls (FA) 30

2.2.2.2 Glycerolipids (GL) 32

2.2.2.3 Glycerophospholipids (GP) 32

2.2.2.4 Sphingolipids (SP) 33

2.2.2.5 Sterol Lipids (ST) 34

2.2.2.6 Prenol Lipids (PR) 34

2.2.2.7 Saccharolipids (SL) 35

2.2.2.8 Polyketides (PK) 35

2.2.3 Lipid Synthesis and Distribution 35

2.2.4 The Diversity of Lipid Functions 36

2.2.4.1 Cellular Architecture 37

2.2.4.2 Lipid Rafts 37

2.2.4.3 Energy Storage 37

2.2.4.4 Regulating Membrane Proteins by Protein–Lipid Interactions 39

2.2.4.5 Signaling Functions 39

2.2.5 Lipidomics 39

References 40

2.3 Carbohydrates 41
Mirjam Czjzek

2.3.1 Introduction 41

2.3.2 Monosaccharides 42

2.3.3 Oligosaccharides 44

2.3.3.1 Disaccharides 44

2.3.3.2 Protein Glycosylations 46

2.3.4 Polysaccharides 47

2.3.4.1 Cellulose 49

2.3.4.2 Hemicelluloses 50

2.3.4.2.1 Xyloglucan 50

2.3.4.2.2 Xylan 50

2.3.4.2.3 Mannan or Glucomannan 52

2.3.4.2.4 Mixed-Linkage Glucan (MLG) 52

2.3.4.3 Pectins 53

2.3.4.4 Chitin 54

2.3.4.5 Alginate 54

2.3.4.6 Marine Galactans 55

2.3.4.7 Storage Polysaccharides: Starch, Glycogen, and Laminarin 55

References 56

2.4 Proteins: From Chemical Properties to Cellular Function: A Practical Review of Actin Dynamics 59
Stéphane Romero and François-Xavier Campbell-Valois

2.4.1 Introduction 59

2.4.2 Molecular Architecture of Proteins 59

2.4.2.1 Amino Acids 60

2.4.2.2 Peptide Bond 60

2.4.2.3 Primary Structure 64

2.4.3 Protein Folding 66

2.4.3.1 Peptide and Protein: Secondary Structure 66

2.4.3.2 3D Folding: Tertiary Structure 67

2.4.3.3 Quaternary Structure 68

2.4.3.4 Protein Folding and De Novo Design 70

2.4.4 Interacting Proteins for Cellular Functions 73

2.4.4.1 Protein Interactions 73

2.4.4.2 Enzymatic Activity of Proteins 75

2.4.4.3 Molecular Motors 77

2.4.5 Self- Assembly and Auto-Organization: Regulation of the Actin Cytoskeleton Assembly 78

2.4.5.1 Origin of the Actin Treadmilling 79

2.4.5.2 Regulation of Actin Treadmilling 83

2.4.5.3 Arp2/3 and Formin-Initiated Actin Assembly to Generate Mechanical Forces 83

2.4.5.4 Self-Organization Properties and Force Generation Understood Using In Vitro Reconstituted Actin-Based Nanomovements 85

2.4.5.5 Applications in Bionanotechnologies 85

2.4.6 Conclusion 87

References 88

3 Functional Biomolecular Engineering 93

3.1 Nucleic Acid Engineering 95
Enora Prado, Mónika Ádok-Sipiczki and Corinne Nardin

3.1.1 Introduction 95

3.1.2 How to Synthetically Produce Nucleic Acids? 95

3.1.2.1 The Chemical Approach 95

3.1.2.2 Polymerase Chain Reaction 96

3.1.2.3 Combinatorial Synthesis of Oligonucleotides and Gene Libraries: Aptamers 100

3.1.3 Secondary Structures in Nanotechnologies 102

3.1.3.1 Watson–Crick H-Bonds 102

3.1.3.1.1 Stem-Loop 102

3.1.3.1.2 Kissing Complex 103

3.1.3.2 Other Kind of H-Bonding 103

3.1.3.2.1 G-Quartets 103

3.1.3.2.2 Origami: Nano-architecture on Surface 105

3.1.4 Conclusion 108

References 108

3.2 Protein Engineering 113
Agathe Urvoas, Marie Valerio-Lepiniec and Philippe Minard

3.2.1 Synthesis of Polypeptides: Chemical or Biological Approach? 113

3.2.2 Proteins: From Natural to Artificial Sources 114

3.2.2.1 How to Get the Coding Sequence of the Protein of Interest? 114

3.2.2.2 E. coli: A Cheap “Protein Factory” with a Diversified Tool Box 114

3.2.2.3 Common Expression Plasmids 116

3.2.2.4 Limits of Recombinant Protein Expression in E. coli 117

3.2.2.5 Some Solutions Are Available to Solve these Expression Problems 118

3.2.3 Proteins: A Large Repertoire of Functional Objects 118

3.2.3.1 Looking for Natural Proteins with Desired Function 118

3.2.3.2 From Protein Engineering to Protein Design 119

3.2.3.2.1 Modified Proteins Are Often Destabilized 119

3.2.3.2.2 Natural or Engineered Proteins: From Small Step to Giant Leap in Sequence Space 120

3.2.3.2.3 Computational Protein Design 120

3.2.3.2.4 Directed Evolution: A Diverse Repertoire Combined with a Selection Process 121

3.2.3.3 Combining Chemistry with Biological Objects 123

3.2.3.3.1 Labeling Natural Amino Acids 123

3.2.3.3.2 Bioorthogonal Labeling 123

3.2.3.3.3 Tag-Mediated Labeling and Enzymatic Coupling 125

3.2.3.3.4 Enzyme-Mediated Ligation 126

3.2.3.3.5 Quality Control of Labeled Biomolecules 126

References 126

4 The Composite Approach 129

4


CAROLE AIMÉ is a CNRS researcher working in Thibaud Coradin's group in the Laboratoire de Chimie de la Matière Condensée de Paris. After she received a Ph.D. working on self-assembling amphiphilic systems in Reiko Oda's group in Bordeaux University-France, she joined Pr. Nobuo Kimizuka's group in Kyushu University-Japan, where she designed functional coordination nanoparticles from nucleotides and lanthanide ions. She is now developing bio-inspired systems made up of inorganic nanoparticles and biopolymers.
THIBAUD CORADIN has been Directeur de Recherche at the CNRS since 2007. He is currently leading the Materials and Biology group in the Laboratoire de Chimie de la Matière Condensée de Paris (UPMC-Paris 06). His research topics include biomineralization, bionanocomposites, biomaterials, bioencapsulation and green materials chemistry. He has co-authored over 170 publications and 17 book chapters and he is a member of the Advisory Editorial Board of Scientific Reports, Current Medicinal Chemistry and Silicon.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.