Ahn | Power Systems and Power Plant Control 1989 | E-Book | sack.de
E-Book

E-Book, Englisch, 556 Seiten, Web PDF

Reihe: IFAC Symposia Series

Ahn Power Systems and Power Plant Control 1989

Selected Papers from the IFAC Symposium, Seoul, Korea, 22-25 August 1989
1. Auflage 2014
ISBN: 978-1-4832-9894-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Papers from the IFAC Symposium, Seoul, Korea, 22-25 August 1989

E-Book, Englisch, 556 Seiten, Web PDF

Reihe: IFAC Symposia Series

ISBN: 978-1-4832-9894-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



The control of power systems and power plants is a subject of growing interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas, such as maintaining a high quality but economical service and coping with environmental constraints. The papers included within this volume provide the most up to date developments in this field of research.

Ahn Power Systems and Power Plant Control 1989 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover
;1
2;Power Systems and Power Plant Control 1989;4
3;Copyright Page;5
4;Table of Contents;10
5;PREFACE;8
6;ACKNOWLEDGEMENTS;9
7;PART 1: INVITED PAPERS;18
7.1;CHAPTER 1. REACTIVE POWER AND SYSTEM OPERATION-INCIPIENT RISK OF GENERATOR CONSTRAINTS AND VOLTAGE COLLAPSE;18
7.1.1;INTRODUCTION;18
7.1.2;1. Analysis of a simple alternative current circuit;19
7.1.3;2. Generalisation of the simplified theory - practical results and consequences;25
7.1.4;3. Final considerations;27
7.2;CHAPTER 2. RECENT PROGRESS IN PRACTICE, DEVELOPMENT AND RESEARCH ON SOFTWARE ENGINEERING (AN ASPECT TOWARD POWER SYSTEMS AND POWER PLANT CONTROL);28
7.2.1;INTRODUCTION;28
7.2.2;TOWARD NEW SOFTWARE DEVELOPMENT PARADIGMS;28
7.2.3;RECENT SOFTWARE DESIGN TECHNIQUES;29
7.2.4;SOFTWARE DISTRIBUTION;29
7.2.5;PROCESS PROGRAMMING AND CASE;30
7.2.6;APPLICATION OF EXPERT SYSTEMS;31
7.2.7;FUTURE PERSPECTIVES;31
7.2.8;REFERENCES;32
7.3;CHAPTER 3. EXPERT SYSTEMS IN ENERGY MANAGEMENT SYSTEMS;36
7.3.1;INTRODUCTION;36
7.3.2;WHATIS AN ENERGY MANAGEMENT SYSTEM?;36
7.3.3;KNOWLEDGE ABOUT POWER SYSTEM OPERATIONS;36
7.3.4;WHY HAVE A COMPUTERER?;37
7.3.5;COMPUTER DEPENDENCY;38
7.3.6;HOW CAN WE MAKE THE EMS EASIER TO USE?;38
7.3.7;TIlE USE OF EXPERT SYSTEMS IN AN EMS;39
7.3.8;CONTROL AND SEQUENCING LOGIC;39
7.3.9;REAL TIME SCADA APPUCATIONS;39
7.3.10;LARGE APPUCATION PROGRAMS;40
7.3.11;HOW FAR SHOULD EXPERT SYSTEMS GO?;41
7.3.12;REFERENCES;41
7.4;CHAPTER 4. EVOLUTION OF ENERGY MANAGEMENT SYSTEMS;42
7.4.1;1.0 ABSTRACT;42
7.4.2;2.0 HISTORY OF EMS TO DATE;42
7.4.3;3.0 EMS TECHNOLOGYTODAY;44
7.4.4;4.0 EMERGING EMS TECHNOLOGIES;45
7.4.5;5.0 FUTURE EMS TECHNOLOGY TRENDS;45
7.4.6;6.0 DEALING WITH DE REGULATION AND A COMPETITIVE ENVIRONMENT;47
7.4.7;7.0 FUTURE OF THE EMS INDUSTRY;47
7.4.8;8.0 CONCLUSIONS;47
8;PART 2: SECURITY ANALYSIS TECHNIQUES;48
8.1;CHAPTER 5. SENSITIVITY AND PARTIAL RE-FACTORIZATION TECHNIQUES FOR SIMULATING OUTAGES OF TRANSMISSION LINES;48
8.1.1;INTRODUCTION;48
8.1.2;THE SENSITIVITY TECHNIQUE;48
8.1.3;THE PARTIAL RE-FACTORIZATION TECHNIQUE;50
8.1.4;COMPARISON OF SENSITIVITY ANALYSIS AND REFACIORIZATION TECHNIQUES;51
8.1.5;CONCLUSION;52
8.1.6;REFERENCES;52
8.2;CHAPTER 6. CRITICAL REVIEW OF BRANCH CONTINGENCY SELECTION METHODS;54
8.2.1;INTRODUCTION;54
8.2.2;SEVERITY INDICES;54
8.2.3;CLASSIFICATION OF BRANCH CONTINGENCY SELECTION METHODS;55
8.2.4;COMPARISON OF DIFFERENT METHODS;56
8.2.5;SPARSITY TECHNIQUES;57
8.2.6;CONCLUSION;58
8.2.7;REFERENCES;58
9;PART 3: NORMAL AND EMERGENCY GENERATION CONTROL;60
9.1;CHAPTER 7. A PRACTICAL DECENTRALIZED LFC SYSTEM WITH GENERATION RATE LIMIT;60
9.1.1;INTRODUCTION;60
9.1.2;DESIGN OF TIlE OPTIMAL CONTROL SYSTEM;61
9.1.3;DECENTRALIZED SUBOPTIMAL CONTROL SYSTEM;61
9.1.4;INTRODUCTION OF GENERATION RATE CONSTRAINT (GRC);61
9.1.5;OUTPUT FEEDBACK CONTROL BY PARAMETER OPTIMIZATION;62
9.1.6;SIMULATION RFSULTS AND DISCUSSIONS;62
9.1.7;CONCLUDING REMARKS;64
9.1.8;REFERENCES;64
9.1.9;APPENDIX;65
9.2;CHAPTER 8. ROBUST LOAD FREQUENCY CONTROL;66
9.2.1;INTRODUCTION;66
9.2.2;CONTROLLED OBJECT;66
9.2.3;CONTROL SYSTEM;67
9.2.4;FUNDAMENTAL CONTROLLER;68
9.2.5;ROBUST COMPENSATOR;69
9.2.6;NUMERICAL EXAMPLE;70
9.2.7;CONCLUSION;71
9.2.8;ACKNOWLEDGEMENT;71
9.2.9;REFERENCES;71
9.3;CHAPTER 9. CONTROL OF FHYDROELECTRIC POWER PLANTS ON THE RIVER GUADALUPE;72
9.3.1;INTRODUCTION;72
9.3.2;HYDRO-CHAIN CONTROL OF GUADALUPE;73
9.3.3;STRUCTURE OF THE CASCADE CONTROLLER;74
9.3.4;DESIGN BASED ON MODERN CONTROL THEORY;75
9.3.5;OPERATING EXPERIENCE;76
9.3.6;CONCLUSION;76
9.3.7;REFERENCES;76
9.4;CHAPTER 10. SECURITY CONTROL OF SMALL LONGITUDINAL SYSTEMS;78
9.4.1;INTRODUCTION;78
9.4.2;PROBLEMS OF SECURITY;78
9.4.3;EFFECTS OF SIZE AND SHAPE;78
9.4.4;SPECIFIC PROBLEMS OF SECURITY CONTROL IN EGAT;79
9.4.5;VOLTAGE STABILITY PROBLEM;81
9.4.6;CONCLUSION;82
9.4.7;REFERENCES;82
9.5;CHAPTER 11. EVALUATING CLOSED LOOP FAST VALVING PERFORMANCE IN POWER PLANTS;84
9.5.1;INTRODUCTION;84
9.5.2;CLOSED LOOP FAST VALVING DESIGN CRITERIA;85
9.5.3;AN EXAMPLE OF APPLICATION;86
9.5.4;CONCLUSIONS;89
9.5.5;REFERENCES;89
10;PART 4: REACTIVE POWER AND VOLTAGE SCHEDULING;90
10.1;CHAPTER 12. OPTIMAL REACTIVE POWER PLANNING, PART I-LOAD LEVEL DECOMPOSITION;90
10.1.1;INTRODUCTION;90
10.1.2;INVESTMENT PLANNING OFTHE OPTIMAL REACTIVE PLANNING;91
10.1.3;DECOMPOSITION ALGORITHM;92
10.1.4;COMPUTATIONAL ALGORITHM;94
10.1.5;NUMERICAL RESULTS;94
10.1.6;CONCLUSIONS;95
10.1.7;REFERENCES;95
10.2;CHAPTER 13. A GLOBAL APPROACH FOR VAR/VOLTAGE MANAGEMENT;98
10.2.1;INTRODUCTION;98
10.2.2;VAR/VOLTAGE OPTIMISATION AND POTENTIAL ACCIDENT ANALYSIS;99
10.2.3;SECURITY FUNCTIONS FROM VAR/VOLTAGE VIEWPOINT;100
10.2.4;SOFTWARE SYSTEM;101
10.2.5;COMPUTATIONAL EXPERIENCE;102
10.2.6;CONCLUSIONS;103
10.2.7;REFERENCES;103
11;PART 5: NETWORK MODELING AND ANALYSIS;104
11.1;CHAPTER 14. NETWORK PARTITION IN POWER SYSTEMS;104
11.1.1;1. INTRODUCTION;104
11.1.2;2. THE PLACEMENT PROBLEM;104
11.1.3;3. THE PARTITION PROBLEM;105
11.1.4;4. THE IDENTIFICATION PROBLEM;107
11.1.5;5. GENERAL ALGORITHM;107
11.1.6;6. RESULTS;107
11.1.7;7. CONCLUSIONS;109
11.1.8;ACKNOWLEDGEMENTS;109
11.1.9;REFERENCES;109
11.2;CHAPTER 15. FAST INITIAL ESTIMATION OF POWER SYSTEM EIGENVALVES;110
11.2.1;1. INTRODUCTION;110
11.2.2;2.REVIEW OF THE AESOPS (Byerly, 1982);111
11.2.3;3. REVIEW OF THE EEAC (Xue et aI, 1988a,b,c and 1989);111
11.2.4;4. THE INITIAL ESTIMATION OF EIGENVALUES BASED ON THE PCOA EQUIVALENCE;112
11.2.5;5. SIMULATIONS;113
11.2.6;6. FURTHER RESEARCH;114
11.2.7;7. CONCLUSIONS;114
11.2.8;8. REFERENCES;114
11.3;CHAPTER 16. DECENTRALIZED COMPUTATION OF EIGEN VALUE FOR LARGE POWER SYSTEM;116
11.3.1;INTRODUCTION;116
11.3.2;THE NEW EIGENVALUE TECHNIQUE;116
11.3.3;DECENTRALIZED COMPUTATION METHOD BY USING DECOMPOSED TECHNIQUE;119
11.3.4;APPLIED DYNAMIC STABILITY ANALYSIS OF LARGE POWER SYSTEM;120
11.3.5;CONCLUSION;121
11.3.6;REFERENCES;121
11.4;CHAPTER 17.
A FLEXIBLE METHODDETECTING NETWORK CLUSTERS FOREMERGENCY CONTROL;122
11.4.1;INTRODUCTION;122
11.4.2;ZABORSZKY'S CLUSTERING APROACH;122
11.4.3;THE AREA CLUSTERING APPROACH;123
11.4.4;CONCLUSIONS;125
11.4.5;REFERENCES;125
11.4.6;APPENDICES;125
12;PART 6: REAL POWER DISPATCH AND UNIT COMMITMENT;128
12.1;CHAPTER 18. SECURITY CONSTRAINED DISPATCH WITH POST-CONTINGENCY CORRECTIVE RESCHEDULING USING LINEAR PROGRAMMING;128
12.1.1;1. INTRODUCTION;128
12.1.2;2. PROBLEM FORMULATION;129
12.1.3;3. CONSTRAINTS RELAXATION;129
12.1.4;4. OUTAGE SIMULATION;130
12.1.5;5. COMPUTATIONAL EXAMPLES;131
12.1.6;6. CONCLUSION;132
12.1.7;7. REFERENCES;132
12.2;CHAPTER 19. DEVELOPMENT OF OPTIMAL POWER FLOW AND APPLICATION TO DYNAMIC ECONOMIC LOAD DISPATCH;134
12.2.1;INTRODUCTION;134
12.2.2;OPTIMAL POWER FLOW;134
12.2.3;NEWTON OPF;135
12.2.4;NUMERICAL SIMULATIONS;136
12.2.5;IMPROVEMENT OF CONVERGENCE OF DECOUPLED NEWTON OPF;136
12.2.6;APPLICATION OF OPF TO DYNAMIC ELD;136
12.2.7;CONCLUSION;138
12.2.8;REFERENCE;139
12.3;CHAPTER 20. LAGRANGIAN RELAXATION METHOD FOR LONG-TERM UNIT COMMITMENT;140
12.3.1;INTRODUCTION;140
12.3.2;SOLUTION PROCEDURE;142
12.3.3;DUAL MAXIMIZATION;143
12.3.4;COMMITMENT MODIFICATION;143
12.3.5;CONCLUSIONS;144
12.3.6;REFERENCES;144
13;PART 7: NETWORK POWER FLOWS;146
13.1;CHAPTER 21. MULTIMETHOD OPTIMAL POWER FLOWS AT ELECTRICITE DE FRANCE;146
13.1.1;INlRODUCTION;146
13.1.2;1. OPFENLARGEDSTATEMENT;146
13.1.3;2. STARTING POINT: ORIGINAL DIFFERENTIAL INJECTIONS METHOD;147
13.1.4;3. MULTIMETHOD OPF BASIC CONCEPTS;148
13.1.5;4. USE OF CRIC;148
13.1.6;5. USE OF ORG THEN QUADRATIC PROGRAMMING FOR THE ACITVE REDUCED MODEL;148
13.1.7;6. IMPLICIT REACTIVE HESSIAN TECHNIQUE;149
13.1.8;7. COMPUTATION OF REACITVE CONSTRAINT SENSITIVITIES DURING OPTIMIZATION;150
13.1.9;8. SPARSE REDUCED GRADIENT FOR INITIAL VOLTAGE MAGNITUDES;150
13.1.10;9. OVERALL MULTIMElHOD OPF ALGORITHM;150
13.1.11;10. NUMERICAL RESULTS;151
13.1.12;11. FURTIIER DEVELOPMENTS;151
13.1.13;CONCLUSION;151
13.1.14;REFERENCES;151
13.2;CHAPTER 22. AN EFFICIENT NLP ALGORITHM OF SQP TYPE SUITABLE TO OPF COMPUTATION OF CONTROLLING SUB-SPACE TYPE;152
13.2.1;INTRODUCTION;152
13.2.2;WHP ALGOR ITHM;152
13.2.3;PRINCIPLE AND DESIGN OF SDQP;153
13.2.4;NUMERICAL TEST AND CONCLUSION;156
13.2.5;REFERENCES;157
13.3;CHAPTER 23. OPTIMAL POWER FLOW EXPERIENCE IN AN ENERGY MANAGEMENT SYSTEM;158
13.3.1;INTRODUCTION;158
13.3.2;CONTROL PROBLEM;158
13.3.3;DISPATCHER INTERFACE;159
13.3.4;CONTROL : OPEN VS CLOSED LOOP;159
13.3.5;RESULTS;160
13.3.6;SUMMARY;162
13.3.7;REFERENCES;162
14;PART 8: SYSTEM DYNAMICS AND STABILITY ANALYSIS;164
14.1;CHAPTER 24. DETERMINATION OF INTERFACE FLOW STABILITY LIMITS BY SENSITIVITY ANALYSIS OF TRANSIENT ENERGY MARGIN;164
14.1.1;1 INTRODUCTION;164
14.1.2;2 THE MATHEMATICAL MODEL;164
14.1.3;3 THEORY AND DESCRIPTION OF THE SENSITIVITY ANALYSIS;165
14.1.4;4 RESULTS;167
14.1.5;5 CONCLUSION;169
14.1.6;ACKNOWLEDGMENTS;169
14.1.7;References;169
14.2;CHAPTER 25. A CONTROL STRATEGY FOR THE AC/DC POWER SYSTEM UNDER LARGE DISTURBANCES;170
14.2.1;INTRODUCTION;170
14.2.2;MATHEMATICAL MODEL OF THE SYSTEM;170
14.2.3;THB TIME-OPTIMAL (BANG-BANG) CONTROL;171
14.2.4;SWITCH CURVES IN STATE PLANE;171
14.2.5;DOUBLE-LOOP FEEDBACK CONTROL STRATEGY;172
14.2.6;THE IMPROVBMBNT ON DC CONTROL SYSTBM;173
14.2.7;DIGITAL SIMULATION RESULTS AND ANALYSIS;173
14.2.8;CONCLUSIONS;173
14.2.9;REFERENCE;174
14.3;CHAPTER 26. EFFECTS OF LOAD CHARACTERISTICS ON THE TRANSIENT STABILITY OF KEPCO'S SYSTEM;176
14.3.1;INTRODUCTION;176
14.3.2;LOAD REPRESENTATION;176
14.3.3;DIFFICULTIES IN APPLYING THE NEW LOAD MODEL TO THE KEPCO SYSTEM;178
14.3.4;EFFECT OF LOAD CHARACTERISTICS;179
14.3.5;CONCLUSION;181
14.3.6;REFERENCES;181
14.4;CHAPTER 27. A NEW APPROACH TO MID- AND LONG-TERM POWER SYSTEM ANALYSIS;182
14.4.1;INTRODUCTION;182
14.4.2;COMPUTATION REDUCTION ALGORITHM USING VOLTAGE SENSITIVITY MATRIX;183
14.4.3;MID and LONG-TERM MODEL of THE POWER SYSTEM;185
14.4.4;CASE STUDY and EVALUATION;186
14.4.5;CONCLUSION;186
14.4.6;REFERENCES;186
14.5;CHAPTER 28. FEATURE EXTRACTION OF LINE FLOW FLUCTUATION AND ITS APPLICATION TO DYNAMIC SECURITY DIAGNOSIS;188
14.5.1;INTRODUCTION;188
14.5.2;SURVEYED POWER SYSTEM AND ITS DYNAMICAL CHARACTERISTICS;189
14.5.3;FEATURE EXTRACTION OF LINE FLOW FLUCTUATION;189
14.5.4;APPLICATION OF PROPOSED FEATURE EXTRACTION TECHNIQUE TO DYNAMIC SECURITY DIAGNOSIS;192
14.5.5;CONCLUSION;193
14.5.6;REFERENCES;193
14.6;CHAPTER 29. ELECTROMECHANICAL DISTANCES FOR IDENTIFYING CONTINGENCY PROPAGATION IN TRANSIENT STABILITY STUDIES;194
14.6.1;1 INTRODUCTION;194
14.6.2;2 PROBLEM STATEMENT;194
14.6.3;3 INVESTIGATIONS;197
14.6.4;4 CONCLUSION;199
14.6.5;5 REFERENCES;199
14.7;CHAPTER 30. A NEW COHERENCE APPROACH OF GENERATORS FOR INVESTIGATION OF SLOW AND SYSTEM WIDE OSCILLATIONS IN LARGE POWER SYSTEMS;200
14.7.1;1. Introduction;200
14.7.2;2. Simplified structure preserving model of a power system;201
14.7.3;3. Validation of the model (MK);202
14.7.4;Conclusions;203
14.7.5;AcknowledgelDent;203
14.7.6;4. References;203
14.8;CHAPTER 31. A CONTROL MEASURE FOR PREVENTING AUTO-PARAMETRIC RESONANCE IN POWER SYSTEMS;206
14.8.1;INTRODUCTION;206
14.8.2;EXAMINATION OF CONTROL SCHEME;206
14.8.3;CONSTRUCTION OF CONTROL SCHEME;208
14.8.4;EFFECTIVENESS OF PROPOSED CONTROL SCHEME;209
14.8.5;CONCLUSION;210
14.8.6;REFERENCE;210
14.8.7;APPENDIX;210
15;PART 9: RELIABILITY AND PRODUCTION COSTING;212
15.1;CHAPTER 32. FUZZY OPTIMIZATION FOR ECONOMY-SECURITY COORDINATION IN POWER SYSTEM PLANNING;212
15.1.1;INTRODUCTION;212
15.1.2;POWER SYSTEM PLANNING USING ECONOMY AND SUPPLY RELIABILITY AS EVALUATION CRITERIA;213
15.1.3;COORDINATION OF ECONOMY AND RELIABILITY ON THE BASIS OF MEMBERSHIP FUNCTIONS;214
15.1.4;APPLICATION RESULT FOR TEST SYSTEM;216
15.1.5;CONCLUSION;216
15.1.6;REFERENCES;216
15.2;CHAPTER 33. EXPECTED POWER SYSTEM PRODUCTIONCOSTS USING LARGE DEVIATION ANDMIXTURE OF NORMALS APPROXIMATIONS;218
15.2.1;INTRODUCTION;218
15.2.2;FORMULATION;218
15.2.3;NUMERICAL EXAMPLE;219
15.2.4;CONCLUSION;220
15.2.5;ACKNOWLEDGEMENTS;220
15.2.6;REFERENCES;222
15.3;CHAPTER 34. PROBABILISTIC PRODUCTION COSTING SIMULATION MODEL BASED ON THE REAL ECONOMIC DISPATCH;224
15.3.1;INTRODUCTION;224
15.3.2;PROBABILISTIC OPTIMAL PRODUCTION COST;226
15.3.3;ECONOMIC DISPATCH;226
15.3.4;SAMPLE STUDY;226
15.3.5;CONCLUSION;227
15.3.6;ACKNOWLEDGEMENT;227
15.3.7;REFERENCES;227
16;PART 10: MODELING AND CONTROL OF POWER PLANTS;230
16.1;CHAPTER 35. ADVANCED TECHNIQUES IN AUTOMATION OF FLUIDIZED BED BOILERS;230
16.1.1;INTRODUCTION;230
16.1.2;IMPROVEMENT AND OPTIMIZATION OF COMBUSTION CONDITIONS;230
16.1.3;A DYNAMIC PROCESS MODEL;232
16.1.4;CONTROL;233
16.1.5;CONCLUSION;235
16.1.6;REFERENCES;235
16.1.7;APPENDIX;235
16.2;CHAPTER 36. ON THE MULTIVARIABLE ROBUST CONTROL OF A BOILER-TURBINE SYSTEM;236
16.2.1;INTRODUCTION;236
16.2.2;LINEARIZED MODEL AND MODELING ERRORS;236
16.2.3;BOILER-TURBINE CONTROL SYSTEM DESIGN;237
16.2.4;SIMULATION RESULTS;239
16.2.5;CONCLUSIONS;240
16.2.6;REFERENCES;240
16.3;CHAPTER 37. A HIERARCHICAL EXPERT SYSTEM FOR FAILURE DIAGNOSIS IN POWER PLANTS;242
16.3.1;INTRODUCTION;242
16.3.2;MODEL-BASED DIAGNOSIS;243
16.3.3;HIERARCHICAL, MODULAR SYSTEM;243
16.3.4;MILLING AND BURNING OF COAL;243
16.3.5;REAL-TIME APPLICATION;245
16.3.6;CONCLUSION;247
16.3.7;REFERENCES;247
16.4;CHAPTER 38. VARIABLE STRUCTURE CONTROL OF WATER TURBINE GOVERNING SYSTEM;248
16.4.1;INTRODUCTION;248
16.4.2;SYSTEM MODEL;248
16.4.3;VARIABLE STRUCTURE CONTROL;249
16.4.4;THE HYPERPLANE DESIGN USING USD TEST;249
16.4.5;SIMULATION RESULTS;250
16.4.6;CONCLUSIONS;251
16.4.7;REFERENCES;251
16.4.8;APPENDIX: NONLINEAR SIMPLEX METHOD;251
17;PART 11: GENERATION AND INTEGRATED EXPANSION PLANNING;254
17.1;CHAPTER 39. FUZZY DECISION-MAKING ON ELECTRIC ENERGY STRATEGY FOR LONG-TERM GENERATION EXPANSION PLANNING;254
17.1.1;INTRODUCTION;254
17.1.2;DECISION PROCEDURE OF FLP PROBLEM;255
17.1.3;DEFINITION OF FUZZY EQUALITY;256
17.1.4;OUTLINE OF THE LONG-TERM GENERATION MIX PLANNING PROBLEM;256
17.1.5;FORMULATION OF THE PLANNING PROBLEM;257
17.1.6;NUMERICAL EXAMPLES;257
17.1.7;CONCLUSION;258
17.1.8;REFERENCES;258
17.2;CHAPTER 40. POWER SYSTEM AND COGENERATION: AN OPTIMAL EXPANSION PLANNING;260
17.2.1;INTRODUCTION;260
17.2.2;THE MODEL;260
17.2.3;CASE STUDY;263
17.2.4;CONCLUSION;264
17.2.5;REFERENCES;264
17.3;CHAPTER 41. RELIABILITY EVALUATION OF GENERATION SYSTEMS INCLUDING ENERGY LIMITED UNITS—A CLUSTER BASED APPROACH;266
17.3.1;INTRODUCTION;266
17.3.2;CLUSTER BASED LOAD MODEL;267
17.3.3;THE METHOD;267
17.3.4;SYSTEM STUDIES;269
17.3.5;CONCLUSION;270
17.3.6;REFERENCES;271
17.4;CHAPTER 42. POWER SYSTEM MODELLING AND SIMULATION FOR INTEGRATED SYSTEM EXPANSION PLANNING;272
17.4.1;INTRODUCTION;272
17.4.2;SYSTEM CHARACTERISTICS;272
17.4.3;LOGIC OF OVERVIEW PLANNING;273
17.4.4;SIMULATION/SUBOPTIMIZATION;274
17.4.5;CONCLUSION;277
17.4.6;REFERENCES;277
17.5;CHAPTER 43 AN ADVANCED INTEGRATED SYSTEM FOR ELECTRIC ENERGY SUPPLY PLANNING;278
17.5.1;INTRODUCTION;278
17.5.2;ROLE OF ENERGY SUPPLY PLANNING;278
17.5.3;PROBLEMS WITH ENERGY SUPPLY PLANNING STUDIES;279
17.5.4;SYSTEM DEVELOPMENT STRATEGY AND POLICIES;279
17.5.5;BRIEF DESCRIPTION OF SYSTEM DESIGN;280
17.5.6;FEATUHES;281
17.5.7;EFFECTIVENESS;282
17.5.8;OBTAINED DATA;282
17.5.9;CONCLUSSION;283
17.5.10;ACKNOWLEDGEMENT;283
17.5.11;REFERENCE;283
18;PART 12: EMS CONTROL CENTERS;284
18.1;CHAPTER 44. NEW COMPUTER CONFIGURATION ANDMAJOR SOFTWARE REDESIGN FOR ONTARIOHYDRO'S ENERGY MANAGEMENT SYSTEM;284
18.1.1;INlRODUCTION;284
18.1.2;OVERVIEW OF SYSTEM CONFIGURATION;284
18.1.3;RELIABILITY/AVAILABILITY;285
18.1.4;DATA BASE MANAGEMENT;285
18.1.5;FAILOVER/RECOVERY;287
18.1.6;INTEGRATED SYSTEM CONSOLE(ISC);287
18.1.7;ALARM MANAGEMENT SOFIWARE;288
18.1.8;MAN MACHINE SUBSYSTEM (MMS);288
18.1.9;CONCLUSION;289
18.1.10;REFERENCE;289
18.2;CHAPTER 45. THE PACIFIC GAS & ELECTRIC COMPANY ENERGY MANAGEMENT SYSTEM OVERVIEW—UNIQUE FEATURES;290
18.2.1;INTRODUCTION;290
18.2.2;BASE APPLICATION SOFTWARE;290
18.2.3;NETWORK ANALYSIS APPLICATIONS SOFTWARE;291
18.2.4;DISPATCHER TRAINING SIMULATOR;293
18.2.5;SUMMARY;294
18.2.6;REFERENCES;294
18.2.7;ACKNOWLEDGEMENTS;294
18.3;CHAPTER 46. THE SCADA/EMS SYSTEM OF THE ITAIPU HYDROELECTRIC POWERPLANT;296
18.3.1;INTRODUCTION;296
18.3.2;SYSTEM FUNCTION;297
18.3.3;SCADA SYSTEM REQUIREMENTS;297
18.3.4;SYSTEM CONFIGURATION;297
18.3.5;SYSTEM TESTS AND ACCEPTANCE;300
18.3.6;PROJECT MANGEMENT;300
18.3.7;CLOSING REMARKS;300
18.3.8;REFERENCES;300
18.4;CHAPTER 47. IMPLEMENTATION OF ADVANCED POWER APPLICATION SOFTWARE TO KEPCO'S ENERGY MANAGEMENT SYSTEM;302
18.4.1;INTRODUCTION;302
18.4.2;AN OVERVIEW OF THE PAS;303
18.4.3;RTNA SEQUENCE;304
18.4.4;SNA SEQUENCE;305
18.4.5;DPF (DISPATCHER POWER FLOW);306
18.4.6;FIELD EXPERIENCE;306
18.4.7;CONCLUSION;306
18.4.8;REFERENCES;306
19;PART 13: POWER SYSTEM STABILIZERS;308
19.1;CHAPTER 48. A ROBUST SELF-TUNING POWER SYSTEM STABILIZER;308
19.1.1;INTRODUCTION;308
19.1.2;A ROBUST SELF-TUNING STABILIZER;309
19.1.3;SIMULATION RESULTS;310
19.1.4;CONCLUSION;311
19.1.5;REFERENCES;311
19.2;CHAPTER 49. NEW ANALYSIS AND TUNING OF STABILIZERS IN MULTIMACHINE POWER SYSTEMS;312
19.2.1;1. Introduction;312
19.2.2;2. Design Procedure;312
19.2.3;3. Selection of Feedback Structure;314
19.2.4;4. Approximation of LQ design;315
19.2.5;5. Conclusions;316
19.2.6;Acknowledgements;316
19.2.7;References;317
19.3;CHAPTER 50. OPTIMAL PSS-PARAMETER SELECTION ALGORITHM WITH NEW PERFORMANCE MEASURE;318
19.3.1;INTRODUCTION;318
19.3.2;DEFINITION OF A NEW PERFORMANCE MEASURE;318
19.3.3;THE GRADIENT OF THE PERFORMANCE WITH RESPECT TO PARAMETERS;319
19.3.4;CASE STUDY;320
19.3.5;CONCLUSION;322
19.3.6;APPENDIX;323
19.3.7;REFERENCES;323
19.4;CHAPTER 51. OPTIMAL SELECTION OF THE PARAMETERS OF POWER SYSTEM STABILIZER;324
19.4.1;INTRODUCTION;324
19.4.2;POWER SYSTEM MODEL;324
19.4.3;OPTIMAL PARAMETER SELECTION ALGORITHM;325
19.4.4;CASE STUDY;327
19.4.5;CONCLUSION;329
19.4.6;References;329
19.5;CHAPTER 52. APPLICATION OF FUZZY LOGIC CONTROL SCHEME FOR STABILITY ENHANCEMENT OF A POWER SYSTEM;330
19.5.1;INTRODUCTION;330
19.5.2;REVIEW OF FUZZY CONTROL SCHEME OF (HIMAMA AND NAKANO, 1988);330
19.5.3;PROPOSED FUZZY CONTROL SCHEME;331
19.5.4;APPLICATION OF PROPOSED FUZZY COTROL SCHEME;331
19.5.5;CONCLUSION;333
19.5.6;REFERENCES;333
19.6;CHAPTER 53. TRANSIENT STABILIZATION OF MULTIMACHINE POWER SYSTEMS BY VARIABLE STRUCTURE SYSTEM CONTROL;334
19.6.1;INTRODUCTION;334
19.6.2;DYNAMIC EQUATIONS OF POWER SYSTEMS;335
19.6.3;DESIGN OF VARIABLE STRUCTURE CONTROL;335
19.6.4;ROBUST VARIABLE STRUCTURE CONTROL;336
19.6.5;SIMULATING STUDY;336
19.6.6;CONCLUSION;337
19.6.7;REFERENCE;337
20;PART 14: SYSTEM PROTECTION AND DIGITAL RELAYS;338
20.1;CHAPTER 54. DIGITAL DIFFERENTIAL RELAY FOR TRANSMISSION LINE PROTECTION USING A CORRELATION METHOD;338
20.1.1;INTRODUCTION;338
20.1.2;PRINCIPLE OF THE CURRENT DIFFERENTIAL RELAY;338
20.1.3;FUNDAMENTAL FREQUENCY FILTERING;339
20.1.4;SIMULATlON;341
20.1.5;CONCLUSION;343
20.1.6;REFERENCES;343
20.1.7;APPENDIX;343
20.2;CHAPTER 55. DEVELOPMENT OF A DIGITAL PCM CURRENT DIFFERENTIAL RELAY WITH 64 kbits/sec. CO-DIRECTIONAL INTERFACE;344
20.2.1;1. INTRODUCTION;344
20.2.2;2. AUTOMATIC SAMPLING SYNCHRONIZATION;344
20.2.3;3. DUPLICATE COMMUNICATION CHANNELS;345
20.2.4;4. CONSTRUCTION OF THE DIGITAL CURRENT DIFFERENTIAL RELAY;346
20.2.5;5. TEST RESULT;346
20.2.6;CONCLUSION;347
20.2.7;REFERENCE;347
20.3;CHAPTER 56. DETECTION OF HIGH IMPEDANCE FAULTSUSING THE RANDOMNESS OF EVENHARMONIC CURRENTS;350
20.3.1;INTRODUCTION;350
20.3.2;CHARACTERISTICS OF ARCING FAULT CURRENTS;351
20.3.3;EVEN ORDER HARMONICS METHODS;351
20.3.4;FIELD TESTS;352
20.3.5;ANALYSIS OF FIELD TEST DATA;353
20.3.6;HARDWARE IMPLEMENTATION;355
20.3.7;CONCLUSIONS;355
20.3.8;REFERENCES;355
20.4;CHAPTER 57. AN ALGORITHM FOR FAULT-DISTANCE IDENTIFICATION IN TRANSMISSION LINE COMPUTER RELAYING: THEORY AND SIMULATION RESULTS;356
20.4.1;DERIVATION OF THE ALGORITHM;356
20.4.2;TESTING OF THE ALGORITHM;357
20.4.3;COMPARISON WITH OTHER ALGORITHMS;359
20.4.4;FREQUENCY RESPONSE;359
20.4.5;SUMMARY AND CONCLUSIONS;360
20.4.6;REFERENCES;360
20.4.7;LIST OF SYMBOLS;361
20.5;CHAPTER 58. A STUDY ON THE DIGITAL DISTANCE RELAYING SCHEME USING KALMAN FILTER;362
20.5.1;1. Introduction;362
20.5.2;2. Recursive forms of Kalman filter;363
20.5.3;3. Estimation of the fundamental frequency components;363
20.5.4;4. Extraction of the symmetrical components;364
20.5.5;5. Digital distance relaying scheme;364
20.5.6;6. Simulation;365
20.5.7;7. CONCLUSION;367
20.5.8;References;367
20.6;CHAPTER 59. A TECHNIQUE FOR DIGITAL RELAYS TO MEASURE FREQUENCY AND ITS RATE OF CHANGE;368
20.6.1;INTRODUCTION;368
20.6.2;DEVELOPMENT OF THE ALGORITHM;368
20.6.3;TESTING THE PROPOSED ALGORITHM;370
20.6.4;CONCLUSIONS;371
20.6.5;REFERENCES;371
20.7;CHAPTER 60. DERIVATION OF CORRECT RELAYING SIGNALS DURING INTERSYSTEM FAULTS FOR THE PROTECTION OF DOUBLE-CIRCUIT LINES;374
20.7.1;INTRODUCTION;374
20.7.2;STUDY SYSTEM AND FAULT CONDITIONS;374
20.7.3;ZERO-SEQUENCE CURRENT COMPENSATION AND IMPEDANCE CALCULATION;375
20.7.4;PHASE R1 TO EARTH FAULT;375
20.7.5;PHASE R1 TO PHASE R2 TO EARTH FAULT;377
20.7.6;PHASE S1 TO PHASE T2 FAULT;378
20.7.7;PHASE S1 TO PHASE T2 TO EARTH FAULT;379
20.7.8;CONCLUSION;380
20.7.9;APPENDIX 1;380
20.7.10;REFERENCES;380
21;PART 15: STATE ESTIMATION;382
21.1;CHAPTER 61. POWER SYSTEM STATE ESTIMATION INCLUDING INTERCONNECTED AC/DC SYSTEMS;382
21.1.1;INTRODUCTION;382
21.1.2;MATIIEMATICAL MODEL FOR STATE ESTIMAnON;382
21.1.3;STATE ESTIMATION OF THE AC POWER SYSTEM;383
21.1.4;STATE ESTIMAnON OF THE DC POWER SYSTM;383
21.1.5;STATE ESTIM:ATION OF THE INTERCONNECTED AC/DC SYSTEM;383
21.1.6;STATE ESTIM:ATION OF THE AC POWER SYSTEM BY SYSTEM DECOMPOSmON;384
21.1.7;SIMULATION AND RESULTS;384
21.1.8;CONCLUSIONS;386
21.1.9;REFERENCES;386
21.1.10;APPENDICES;386
21.2;CHAPTER 62. AN EFFICIENT ALGORITHM FOR COMPUTING THE WEIGHTED LEAST ABSOLUTE VALUE ESTIMATE IN POWER SYSTEM STATIC STATE ESTIMATION;388
21.2.1;INTRODUCTION;388
21.2.2;PRELIMINARY REMARKS;389
21.2.3;THE BCS ALGORITHM;389
21.2.4;COMPUTATIONAL CONSIDERATIONS;390
21.2.5;IEEE 30 BUS NETWORK;391
21.2.6;CONCLUSION;391
21.2.7;REFERENCES;392
22;PART 16: VOLTAGE STABILITY;394
22.1;CHAPTER 63. A STRUCTURAL STABILITY ANALYSIS OF VOLTAGE COLLAPSE ON POWER SYSTEMS;394
22.1.1;INTRODUCTION;394
22.1.2;THEORETICAL BACKGROUND AND MODEL DEVELOPMENT;395
22.1.3;STRUCTURAL WEAKNESS;398
22.1.4;REFERENCES;399
22.1.5;ACKNOWLEDGEMENT;399
22.2;CHAPTER 64. POSSIBILITY OF JUMP PHENOMENA FROM OPERABLE LOAD FLOW SOLUTION TO NONOPERABLE SOLUTION BY THE IMPACT OF SWITCHING-IN OF SHUNT CAPACITOR BANKS;400
22.2.1;1. INTRODUCTION;400
22.2.2;2. JUMP PHENOMENON IN TWO-BUS SYSTEM;401
22.2.3;3. JUMP PHENOMENON IN MULTI-BUS SYSTEM;403
22.2.4;4. DYNAMIC SIMULATION BY ANALOGUE SIMULATOR;404
22.2.5;5. CONCLUSION;405
22.2.6;References;405
22.3;CHAPTER 65. SENSITIVITY ANALYSIS OF TRANSIENT SECURITY OF POWER SYSTEMS WITH RESPECT TO REACTIVE ASPECTS;406
22.3.1;1. INTRODUCTION;406
22.3.2;2. THE EXTENDED EQUAL AREA CRITERION (EEAC);406
22.3.3;3. SENSITIVITY W.R.T. E;408
22.3.4;4. SENSITIVITY W.R.T OTHER REACTIVE ASPECTS;408
22.3.5;5. SIMULATION;409
22.3.6;6. CONCLUSION;410
22.3.7;7. REFERENCES;410
22.4;CHAPTER 66. SECURITY BASED ECONOMIC OPERATION OF ELECTRIC POWER SYSTEM;412
22.4.1;INTRODUCTION;412
22.4.2;ECONOMIC OPERATION;412
22.4.3;VOLTAGE SECURITY ASSESSMENT;414
22.4.4;NUMERICAL EXAMPLE;415
22.4.5;CONCLUSION;417
22.4.6;REFERENCE;417
23;PART 17: ELECTRICAL MACHINES AND EQIJIPMENT;418
23.1;CHAPTER 67. MAXIMUM LIKELIHOOD ESTIMATION OF HIGH FREQUENCY DISTRIBUTED TRANSFORMER PARAMETERS;418
23.1.1;INTRODUCTION;418
23.1.2;PROBLEM DEFINITION;418
23.1.3;ESTABLISHMENT OF THE TRANSFORMER MODEL;419
23.1.4;MATHEMATICAL TECHNIQUES IN TRANSFORMER PARAMETER ESTIMATION;420
23.1.5;ANALYSIS OF RESULTS;421
23.1.6;FREQUENCY DOMAIN ESTIMATION;421
23.1.7;TIME DOMAIN ESTIMATION;421
23.1.8;CONCLUSION;422
23.1.9;ACKNOWLEDGEMENT;422
23.1.10;REFERENCES;422
23.1.11;APPENDIX I;422
23.2;CHAPTER 68. THEORETICAL AND EXPERIMENTALINVESTIGATIONS ON CIRCUIT BREAKERTRANSIENT RECOVERY VOLTAGES;424
23.2.1;INTRODUCTION;424
23.2.2;THEORETICAL ANALYSIS;425
23.2.3;EXPERIMENTAL ANALYSIS;425
23.2.4;RESULTS;426
23.2.5;CONCLUSION;427
23.2.6;REFERENCES;427
23.2.7;ACKNOWLEDGEMENT;427
23.3;CHAPTER 69. THE COMPUTER ANALYSIS OF SWITCHING TRANSIENTS INVOLVING ARC MODEL;428
23.3.1;INTRODUCTION;428
23.3.2;MATHEMATICAL ARC MODEL FOR SWITCHING SURGE ANALYSIS;428
23.3.3;THE MODIFIED DOMMEL METHOD;429
23.3.4;DISTRIBUTION CABLE SYSTEM;429
23.3.5;SOLUTION TO SYSTEM EQUATIONS WITH DYNAMIC ARC;429
23.3.6;COMPUTER RESULTS;430
23.3.7;CONCLUSION;431
23.3.8;REFERENCES;431
23.3.9;APPENDIX A;431
23.4;CHAPTER 70. A STUDY ON HARMONIC ELIMINATION METHOD OF PWM INVERTER FED INDUCTION MOTOR SYSTEM USING WALSH SERIES;434
23.4.1;1. INTRODUCTION;434
23.4.2;2. PROPOSED SCHEME WITH A VIEW TO ELIMINATING HARMONICS IN PWM VOLTAGE SOURCR INVERTER USING WALSH FUNCTION;434
23.4.3;3. DETERMINATION OF SWITCHING ANGLE OF PWM VOLTAGE SOURCE INVERTER;436
23.4.4;4. SIMULATION AND EXPERIMENTAL RESULTS;438
23.4.5;5. CONCLUSIONS;439
23.4.6;APPENDIX;439
23.4.7;NOMENCLATURE;440
23.4.8;REFERENCES;440
23.5;CHAPTER 71. OPTIMAL PWM METHODS FORACTIVE POWER FILTERS;442
23.5.1;INTRODUCTION;442
23.5.2;BASIC OPERATION PRINCIPLE OF ACTIVE POWER FILTERS;442
23.5.3;OPTIMAL PWM METHOD FOR CURRENT SOURCE TYPE ACTIVE POWER FILTERS;443
23.5.4;OPTIMAL PWM METHOD FOR VOLTAGE SOURCE TYPE ACTIVE POWER FILTERS;445
23.5.5;CONCLUSION;447
23.5.6;REFERENCES;447
24;PART 18: CONTROL CENTER MAN-MACHINE INTERFACE;448
24.1;CHAPTER 72. A DESIGN TOOL FOR DISTRIBUTEDMAN-MACHINE INTERFACE OF REAL-TIMEPOWER SYSTEMS ANDPOWER PLANT SIMULATORS;448
24.1.1;INTRODUCTION;448
24.1.2;MAIN FEATURES;448
24.1.3;CONCLUSION;451
24.1.4;REFERENCES;452
24.2;CHAPTER 73. RULE-BASED APPROACH FOR AN AUTOMATIC DESIGN OF SUBSTATION DIAGRAMS FROM A GDL-NETWORK DESCRIPTION;454
24.2.1;INTRODUCTION;454
24.2.2;TYPE OF DATA BASE USED;454
24.2.3;SUBSTATION EXAMPLE;455
24.2.4;GRAPHIC DIAGRAM DESCRIPTION;458
24.2.5;AUTOMATIC DIAGRAM PREPARATION;458
24.2.6;PROGRAM;459
24.2.7;REFERENCES;459
25;PART 19: DISTRIBUTION SYSTEM CONTROL;460
25.1;CHAPTER 74. NEW RECONFIGURATION ALGORITHM FOR DISTRIBUTION SYSTEM—PRIORITY CONSTRAINED EMERGENCY SERVICE RESTORATION;460
25.1.1;INTRODUCTION;460
25.1.2;DESCRIPTION OF THE PROBLEM;460
25.1.3;SOLUTION ALGORITHM;461
25.1.4;NUMERICAL EXAMPLES;464
25.1.5;CONCLUSION;465
25.1.6;ACKNOWLEDGMENT;465
25.1.7;REFERENCES;465
25.1.8;APPENDIX;465
25.2;CHAPTER 75. AN INTEGRATED NETWORK INFORMATION AND SCADA SYSTEM FOR THE CONTROL OF PUBLIC DISTRIBUTION NETWORKS;466
25.2.1;INTRODUCTION;466
25.2.2;THE INTEGRATED SYSTEM;466
25.2.3;APPLICATIONS TO FEEDER CONTROL;468
25.2.4;PRACTICAL IMPLEMENTATION OF THE SYSTEM;470
25.2.5;CONCLUSION;470
25.2.6;REFERENCES;471
26;PART 20: LOAD FORECASTING AND MAINTENANCE SCHEDULING;472
26.1;CHAPTER 76. SHORT-TERM FEEDER LOAD FORECASTING: AN EXPERT SYSTEM USING FUZZY LOGIC;472
26.1.1;INTRODUCTION;472
26.1.2;AN OVERVIEW OF LOAD FORECASTING METHODS;472
26.1.3;FUZZY LOGIC APPROACH;473
26.1.4;SOFTWARE DESIGN;474
26.1.5;ILLUSTRATIVE EXAMPLE;475
26.1.6;CONCLUSIONS;477
26.1.7;ACKOWLEDGEMENT;477
26.1.8;REFERENCES;477
26.2;CHAPTER 77. AN EXPERT SYSTEM FOR SHORT TERM LOAD FORECASTING BY FUZZY DECISION;478
26.2.1;INTRODUCTION;478
26.2.2;CLASSIFICATION OF LOAD PATTERNS;478
26.2.3;ESTIMATION FOR ORDINARY DAYS;479
26.2.4;ESTIMATION FOR SPECIAL DAYS;479
26.2.5;RESULTS;483
26.2.6;CONCLUSION;483
26.2.7;REFERENCES;483
27;PART 21: TRANSMISSION EXPANSION PLANNING;484
27.1;CHAPTER 78. A SENSITIVITY ALGORITHM FOR THE LONG-TERM TRANSMISSION PLANNING FORMULATED WITH TWO-STEP OPTIMIZATION PROCEDURE;484
27.1.1;1. Introduction;484
27.1.2;2. Problem formulation of LTTP;484
27.1.3;3. Sensitivity algorithm;486
27.1.4;4. Case study;487
27.1.5;5. Conclusion;489
27.1.6;6. References;489
27.2;CHAPTER 79. ACTOR: A NEW TOOL TO EVALUATE THE ANNUAL ECONOMIC SAVINGS PROVIDED BY A REINFORCEMENT OF A SUBTRANSMISSION NETWORK;490
27.2.1;INTRODUCTION;490
27.2.2;WHY A NEW TOOL?;490
27.2.3;THE SUBTRANSMISSION NETWORK EXPANSION PLANNING PROBLEM SEEN BY THE PLANNER;491
27.2.4;A REVIEW OF MAIN AVAILABLE DATAS;491
27.2.5;MODELING;493
27.2.6;MAIN RESULTS;493
27.2.7;EXAMPLES OF UTILIZATION;493
27.2.8;CONCLUSION;494
27.2.9;REFERENCES;494
28;PART 22: EXPERT SYSTEM APPLICATIONS;496
28.1;CHAPTER 80. NETWORK RESTORATION EXPERT SYSTEM;496
28.1.1;INTRODUCTION;496
28.1.2;KNOWLEDGE BASE;496
28.1.3;INFERENCE AND EXPLANATION CCMFDNENTS;497
28.1.4;STAND ALONE EXPERT SYSTEM;497
28.1.5;DATABASE COUPLING;498
28.1.6;RESTORATION TRAINING SIMULATOR;498
28.1.7;CONCLUSION;499
28.1.8;ACKNOWLEDGEMEN;499
28.1.9;REFERENCES;499
28.2;CHAPTER 81. AN EXPERT SYSTEM FOR THE ELECTRIC POWER DISTRIBUTION SYSTEM DESIGN;500
28.2.1;INTRODUCTION;500
28.2.2;GEOGRAPHIC MAP MANAGEMENT SYSTEM;500
28.2.3;EXPERT SYSTEMS DEVELOPMENT;501
28.2.4;APPLICATION EXAMPLE;504
28.2.5;CUSTOMER APPLICATION DATA;504
28.2.6;CANDIDATE lRANSFORMER DATA;504
28.2.7;CANDIDATE POLE DATA;505
28.2.8;CONCLUSIONS;505
28.2.9;REFERENCES;505
28.3;CHAPTER 82. AN EXPERT SYSTEM USED IN POWER SYSTEM PROTECTION;506
28.3.1;INTRODUCTION;506
28.3.2;INFERENCE ENGINE;507
28.3.3;KNOWLEDGE BASE;507
28.3.4;SYSTEM IMPLEMENTATION;509
28.3.5;EXPLANATION CAPABILITY;509
28.3.6;OUTLINE OF THE SYSTEM;509
28.3.7;SYSTEM OPERATION;509
28.3.8;DESIGN EXAMPLE;510
28.3.9;CONCLUSION;510
28.3.10;REFERENCES;510
28.4;CHAPTER 83. PROSET: AN EXPERT SYSTEM FOR PROTECTIVE RELAY SETTING;512
28.4.1;INTRODUCTION;512
28.4.2;FRAME-BASED EXPERT SYSTEM;512
28.4.3;AN ENHANCED SYSTEM : PROSET;513
28.4.4;CONCLUSIONS;515
28.4.5;REFERENCES;516
29;PART 23: VOLTAGE REGULATION AND CONTROL;518
29.1;CHAPTER 84. A STUDY ON THE OPTIMAL OPERATION METHOD OF VOLTAGE REGULATOR AT DISTRIBUTION SUBSTATION;518
29.1.1;INTRODUCTION;518
29.1.2;OPTIMAL OPERATION METHOD OF VOLTAGE REGULATOR;518
29.1.3;APPLICATION AND COMPARISON;521
29.1.4;REFERENCES;522
29.2;CHAPTER 85. THE 77kV 40MVA MULTI-FUNCTION SVC (STATIC VAR COMPENSATOR) INSTALLED IN SUBSTATIONS;524
29.2.1;INTRODUCTION;524
29.2.2;CONFIGURATION OF SVC MAIN CIRCUITS;524
29.2.3;FEATURES OF CONSITUTING UNITS;525
29.2.4;FUNDAMENTAL CONTROL FUNCTION;525
29.2.5;RESULTS OF SIMULATED STUDIES;527
29.2.6;RESULTS OF EFFECTIVENESS VERIFICATION;528
29.2.7;CONCLUSION;528
29.2.8;REFERENCES;528
29.3;CHAPTER 86. OPTIMAL DESIGN OF AN AUTOMATICVOLTAGE REGULArrOR FORSTATIC VAR SYSTEMS;530
29.3.1;INTRODUCTION;530
29.3.2;STATIC VAR SYSTEMS;531
29.3.3;MODEL STRUCTURE AND CONTROL OF SVS;531
29.3.4;SIMULATION OF THE STATIC VAR SYSTEM;532
29.3.5;CONCLUSION;534
29.3.6;BIBLIOGRAPHY;534
29.3.7;APPENDIX;535
30;PART 24: SYSTEM OPERATOR TRAINING;536
30.1;CHAPTER 87. OPERATOR TRAINING USING PLANNED INCIDENTS IN THE POWER SYSTEM;536
30.1.1;INTRODUCTION;536
30.1.2;SUMMARY OF PROBLEM;537
30.1.3;CLOSING REMARK;539
30.2;CHAPTER 88. POWER SYSTEM SIMULATOR FOR REALISTIC DISPATCHER TRAINING;540
30.2.1;INTRODUCTION;540
30.2.2;SYSTEM SOLUTION;541
30.2.3;NETWORK SIMULATOR;542
30.2.4;SEQUENCE OF TRAINING;543
30.2.5;CONCLUSIONS;544
30.2.6;REFERENCES;544
31;PART 25: POWER SYSTEM SIMULATORS;546
31.1;CHAPTER 89. DEVELOPMENT OF HIGH PRECISION POWERSYSTEM SIMULATOR;546
31.1.1;INTRODUCTION;546
31.1.2;CONFIGURATION OF SIMULATOR;546
31.1.3;DEVELOPEMENT OF ELEMENT MODEL;547
31.1.4;SIMULATION AND SOFTWARE;549
31.1.5;EXAMPLE OF APPLICATION;550
31.1.6;CONCLUSION;551
31.1.7;REFERENCES;551
31.2;CHAPTER 90. FAST DYNAMIC SIMULATION OF POWER SYSTEMS USING MULTIPLE MICROCOMPUTERS;552
31.2.1;INTRODUCTION;552
31.2.2;SYSTEM MODELLING;553
31.2.3;PROGRAM DEVELOPMENT;554
31.2.4;HARDWARE CONSTRUCTION;554
31.2.5;INTEGRATION ALGORITHM;554
31.2.6;COMMENTS AND CONCLUSIONS;555
31.2.7;REFERENCES;555
32;AUTHOR INDEX;558
33;KEYWORD INDEX;560
34;SYMPOSIA VOLUMES;564
35;WORKSHOP VOLUMES;565



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.