E-Book, Englisch, 556 Seiten, Web PDF
Reihe: IFAC Symposia Series
Ahn Power Systems and Power Plant Control 1989
1. Auflage 2014
ISBN: 978-1-4832-9894-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from the IFAC Symposium, Seoul, Korea, 22-25 August 1989
E-Book, Englisch, 556 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9894-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The control of power systems and power plants is a subject of growing interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas, such as maintaining a high quality but economical service and coping with environmental constraints. The papers included within this volume provide the most up to date developments in this field of research.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover
;1
2;Power Systems and Power Plant Control 1989;4
3;Copyright Page;5
4;Table of Contents;10
5;PREFACE;8
6;ACKNOWLEDGEMENTS;9
7;PART 1: INVITED PAPERS;18
7.1;CHAPTER 1. REACTIVE POWER AND SYSTEM OPERATION-INCIPIENT RISK OF GENERATOR CONSTRAINTS AND VOLTAGE COLLAPSE;18
7.1.1;INTRODUCTION;18
7.1.2;1. Analysis of a simple alternative current circuit;19
7.1.3;2. Generalisation of the simplified theory - practical results and consequences;25
7.1.4;3. Final considerations;27
7.2;CHAPTER 2. RECENT PROGRESS IN PRACTICE, DEVELOPMENT AND RESEARCH ON SOFTWARE ENGINEERING (AN ASPECT TOWARD POWER SYSTEMS AND POWER PLANT CONTROL);28
7.2.1;INTRODUCTION;28
7.2.2;TOWARD NEW SOFTWARE DEVELOPMENT PARADIGMS;28
7.2.3;RECENT SOFTWARE DESIGN TECHNIQUES;29
7.2.4;SOFTWARE DISTRIBUTION;29
7.2.5;PROCESS PROGRAMMING AND CASE;30
7.2.6;APPLICATION OF EXPERT SYSTEMS;31
7.2.7;FUTURE PERSPECTIVES;31
7.2.8;REFERENCES;32
7.3;CHAPTER 3. EXPERT SYSTEMS IN ENERGY MANAGEMENT SYSTEMS;36
7.3.1;INTRODUCTION;36
7.3.2;WHATIS AN ENERGY MANAGEMENT SYSTEM?;36
7.3.3;KNOWLEDGE ABOUT POWER SYSTEM OPERATIONS;36
7.3.4;WHY HAVE A COMPUTERER?;37
7.3.5;COMPUTER DEPENDENCY;38
7.3.6;HOW CAN WE MAKE THE EMS EASIER TO USE?;38
7.3.7;TIlE USE OF EXPERT SYSTEMS IN AN EMS;39
7.3.8;CONTROL AND SEQUENCING LOGIC;39
7.3.9;REAL TIME SCADA APPUCATIONS;39
7.3.10;LARGE APPUCATION PROGRAMS;40
7.3.11;HOW FAR SHOULD EXPERT SYSTEMS GO?;41
7.3.12;REFERENCES;41
7.4;CHAPTER 4. EVOLUTION OF ENERGY MANAGEMENT SYSTEMS;42
7.4.1;1.0 ABSTRACT;42
7.4.2;2.0 HISTORY OF EMS TO DATE;42
7.4.3;3.0 EMS TECHNOLOGYTODAY;44
7.4.4;4.0 EMERGING EMS TECHNOLOGIES;45
7.4.5;5.0 FUTURE EMS TECHNOLOGY TRENDS;45
7.4.6;6.0 DEALING WITH DE REGULATION AND A COMPETITIVE ENVIRONMENT;47
7.4.7;7.0 FUTURE OF THE EMS INDUSTRY;47
7.4.8;8.0 CONCLUSIONS;47
8;PART 2: SECURITY ANALYSIS TECHNIQUES;48
8.1;CHAPTER 5. SENSITIVITY AND PARTIAL RE-FACTORIZATION TECHNIQUES FOR SIMULATING OUTAGES OF TRANSMISSION LINES;48
8.1.1;INTRODUCTION;48
8.1.2;THE SENSITIVITY TECHNIQUE;48
8.1.3;THE PARTIAL RE-FACTORIZATION TECHNIQUE;50
8.1.4;COMPARISON OF SENSITIVITY ANALYSIS AND REFACIORIZATION TECHNIQUES;51
8.1.5;CONCLUSION;52
8.1.6;REFERENCES;52
8.2;CHAPTER 6. CRITICAL REVIEW OF BRANCH CONTINGENCY SELECTION METHODS;54
8.2.1;INTRODUCTION;54
8.2.2;SEVERITY INDICES;54
8.2.3;CLASSIFICATION OF BRANCH CONTINGENCY SELECTION METHODS;55
8.2.4;COMPARISON OF DIFFERENT METHODS;56
8.2.5;SPARSITY TECHNIQUES;57
8.2.6;CONCLUSION;58
8.2.7;REFERENCES;58
9;PART 3: NORMAL AND EMERGENCY GENERATION CONTROL;60
9.1;CHAPTER 7. A PRACTICAL DECENTRALIZED LFC SYSTEM WITH GENERATION RATE LIMIT;60
9.1.1;INTRODUCTION;60
9.1.2;DESIGN OF TIlE OPTIMAL CONTROL SYSTEM;61
9.1.3;DECENTRALIZED SUBOPTIMAL CONTROL SYSTEM;61
9.1.4;INTRODUCTION OF GENERATION RATE CONSTRAINT (GRC);61
9.1.5;OUTPUT FEEDBACK CONTROL BY PARAMETER OPTIMIZATION;62
9.1.6;SIMULATION RFSULTS AND DISCUSSIONS;62
9.1.7;CONCLUDING REMARKS;64
9.1.8;REFERENCES;64
9.1.9;APPENDIX;65
9.2;CHAPTER 8. ROBUST LOAD FREQUENCY CONTROL;66
9.2.1;INTRODUCTION;66
9.2.2;CONTROLLED OBJECT;66
9.2.3;CONTROL SYSTEM;67
9.2.4;FUNDAMENTAL CONTROLLER;68
9.2.5;ROBUST COMPENSATOR;69
9.2.6;NUMERICAL EXAMPLE;70
9.2.7;CONCLUSION;71
9.2.8;ACKNOWLEDGEMENT;71
9.2.9;REFERENCES;71
9.3;CHAPTER 9. CONTROL OF FHYDROELECTRIC POWER PLANTS ON THE RIVER GUADALUPE;72
9.3.1;INTRODUCTION;72
9.3.2;HYDRO-CHAIN CONTROL OF GUADALUPE;73
9.3.3;STRUCTURE OF THE CASCADE CONTROLLER;74
9.3.4;DESIGN BASED ON MODERN CONTROL THEORY;75
9.3.5;OPERATING EXPERIENCE;76
9.3.6;CONCLUSION;76
9.3.7;REFERENCES;76
9.4;CHAPTER 10. SECURITY CONTROL OF SMALL LONGITUDINAL SYSTEMS;78
9.4.1;INTRODUCTION;78
9.4.2;PROBLEMS OF SECURITY;78
9.4.3;EFFECTS OF SIZE AND SHAPE;78
9.4.4;SPECIFIC PROBLEMS OF SECURITY CONTROL IN EGAT;79
9.4.5;VOLTAGE STABILITY PROBLEM;81
9.4.6;CONCLUSION;82
9.4.7;REFERENCES;82
9.5;CHAPTER 11. EVALUATING CLOSED LOOP FAST VALVING PERFORMANCE IN POWER PLANTS;84
9.5.1;INTRODUCTION;84
9.5.2;CLOSED LOOP FAST VALVING DESIGN CRITERIA;85
9.5.3;AN EXAMPLE OF APPLICATION;86
9.5.4;CONCLUSIONS;89
9.5.5;REFERENCES;89
10;PART 4: REACTIVE POWER AND VOLTAGE SCHEDULING;90
10.1;CHAPTER 12. OPTIMAL REACTIVE POWER PLANNING, PART I-LOAD LEVEL DECOMPOSITION;90
10.1.1;INTRODUCTION;90
10.1.2;INVESTMENT PLANNING OFTHE OPTIMAL REACTIVE PLANNING;91
10.1.3;DECOMPOSITION ALGORITHM;92
10.1.4;COMPUTATIONAL ALGORITHM;94
10.1.5;NUMERICAL RESULTS;94
10.1.6;CONCLUSIONS;95
10.1.7;REFERENCES;95
10.2;CHAPTER 13. A GLOBAL APPROACH FOR VAR/VOLTAGE MANAGEMENT;98
10.2.1;INTRODUCTION;98
10.2.2;VAR/VOLTAGE OPTIMISATION AND POTENTIAL ACCIDENT ANALYSIS;99
10.2.3;SECURITY FUNCTIONS FROM VAR/VOLTAGE VIEWPOINT;100
10.2.4;SOFTWARE SYSTEM;101
10.2.5;COMPUTATIONAL EXPERIENCE;102
10.2.6;CONCLUSIONS;103
10.2.7;REFERENCES;103
11;PART 5: NETWORK MODELING AND ANALYSIS;104
11.1;CHAPTER 14. NETWORK PARTITION IN POWER SYSTEMS;104
11.1.1;1. INTRODUCTION;104
11.1.2;2. THE PLACEMENT PROBLEM;104
11.1.3;3. THE PARTITION PROBLEM;105
11.1.4;4. THE IDENTIFICATION PROBLEM;107
11.1.5;5. GENERAL ALGORITHM;107
11.1.6;6. RESULTS;107
11.1.7;7. CONCLUSIONS;109
11.1.8;ACKNOWLEDGEMENTS;109
11.1.9;REFERENCES;109
11.2;CHAPTER 15. FAST INITIAL ESTIMATION OF POWER SYSTEM EIGENVALVES;110
11.2.1;1. INTRODUCTION;110
11.2.2;2.REVIEW OF THE AESOPS (Byerly, 1982);111
11.2.3;3. REVIEW OF THE EEAC (Xue et aI, 1988a,b,c and 1989);111
11.2.4;4. THE INITIAL ESTIMATION OF EIGENVALUES BASED ON THE PCOA EQUIVALENCE;112
11.2.5;5. SIMULATIONS;113
11.2.6;6. FURTHER RESEARCH;114
11.2.7;7. CONCLUSIONS;114
11.2.8;8. REFERENCES;114
11.3;CHAPTER 16. DECENTRALIZED COMPUTATION OF EIGEN VALUE FOR LARGE POWER SYSTEM;116
11.3.1;INTRODUCTION;116
11.3.2;THE NEW EIGENVALUE TECHNIQUE;116
11.3.3;DECENTRALIZED COMPUTATION METHOD BY USING DECOMPOSED TECHNIQUE;119
11.3.4;APPLIED DYNAMIC STABILITY ANALYSIS OF LARGE POWER SYSTEM;120
11.3.5;CONCLUSION;121
11.3.6;REFERENCES;121
11.4;CHAPTER 17.
A FLEXIBLE METHODDETECTING NETWORK CLUSTERS FOREMERGENCY CONTROL;122
11.4.1;INTRODUCTION;122
11.4.2;ZABORSZKY'S CLUSTERING APROACH;122
11.4.3;THE AREA CLUSTERING APPROACH;123
11.4.4;CONCLUSIONS;125
11.4.5;REFERENCES;125
11.4.6;APPENDICES;125
12;PART 6: REAL POWER DISPATCH AND UNIT COMMITMENT;128
12.1;CHAPTER 18. SECURITY CONSTRAINED DISPATCH WITH POST-CONTINGENCY CORRECTIVE RESCHEDULING USING LINEAR PROGRAMMING;128
12.1.1;1. INTRODUCTION;128
12.1.2;2. PROBLEM FORMULATION;129
12.1.3;3. CONSTRAINTS RELAXATION;129
12.1.4;4. OUTAGE SIMULATION;130
12.1.5;5. COMPUTATIONAL EXAMPLES;131
12.1.6;6. CONCLUSION;132
12.1.7;7. REFERENCES;132
12.2;CHAPTER 19. DEVELOPMENT OF OPTIMAL POWER FLOW AND APPLICATION TO DYNAMIC ECONOMIC LOAD DISPATCH;134
12.2.1;INTRODUCTION;134
12.2.2;OPTIMAL POWER FLOW;134
12.2.3;NEWTON OPF;135
12.2.4;NUMERICAL SIMULATIONS;136
12.2.5;IMPROVEMENT OF CONVERGENCE OF DECOUPLED NEWTON OPF;136
12.2.6;APPLICATION OF OPF TO DYNAMIC ELD;136
12.2.7;CONCLUSION;138
12.2.8;REFERENCE;139
12.3;CHAPTER 20. LAGRANGIAN RELAXATION METHOD FOR LONG-TERM UNIT COMMITMENT;140
12.3.1;INTRODUCTION;140
12.3.2;SOLUTION PROCEDURE;142
12.3.3;DUAL MAXIMIZATION;143
12.3.4;COMMITMENT MODIFICATION;143
12.3.5;CONCLUSIONS;144
12.3.6;REFERENCES;144
13;PART 7: NETWORK POWER FLOWS;146
13.1;CHAPTER 21. MULTIMETHOD OPTIMAL POWER FLOWS AT ELECTRICITE DE FRANCE;146
13.1.1;INlRODUCTION;146
13.1.2;1. OPFENLARGEDSTATEMENT;146
13.1.3;2. STARTING POINT: ORIGINAL DIFFERENTIAL INJECTIONS METHOD;147
13.1.4;3. MULTIMETHOD OPF BASIC CONCEPTS;148
13.1.5;4. USE OF CRIC;148
13.1.6;5. USE OF ORG THEN QUADRATIC PROGRAMMING FOR THE ACITVE REDUCED MODEL;148
13.1.7;6. IMPLICIT REACTIVE HESSIAN TECHNIQUE;149
13.1.8;7. COMPUTATION OF REACITVE CONSTRAINT SENSITIVITIES DURING OPTIMIZATION;150
13.1.9;8. SPARSE REDUCED GRADIENT FOR INITIAL VOLTAGE MAGNITUDES;150
13.1.10;9. OVERALL MULTIMElHOD OPF ALGORITHM;150
13.1.11;10. NUMERICAL RESULTS;151
13.1.12;11. FURTIIER DEVELOPMENTS;151
13.1.13;CONCLUSION;151
13.1.14;REFERENCES;151
13.2;CHAPTER 22. AN EFFICIENT NLP ALGORITHM OF SQP TYPE SUITABLE TO OPF COMPUTATION OF CONTROLLING SUB-SPACE TYPE;152
13.2.1;INTRODUCTION;152
13.2.2;WHP ALGOR ITHM;152
13.2.3;PRINCIPLE AND DESIGN OF SDQP;153
13.2.4;NUMERICAL TEST AND CONCLUSION;156
13.2.5;REFERENCES;157
13.3;CHAPTER 23. OPTIMAL POWER FLOW EXPERIENCE IN AN ENERGY MANAGEMENT SYSTEM;158
13.3.1;INTRODUCTION;158
13.3.2;CONTROL PROBLEM;158
13.3.3;DISPATCHER INTERFACE;159
13.3.4;CONTROL : OPEN VS CLOSED LOOP;159
13.3.5;RESULTS;160
13.3.6;SUMMARY;162
13.3.7;REFERENCES;162
14;PART 8: SYSTEM DYNAMICS AND STABILITY ANALYSIS;164
14.1;CHAPTER 24. DETERMINATION OF INTERFACE FLOW STABILITY LIMITS BY SENSITIVITY ANALYSIS OF TRANSIENT ENERGY MARGIN;164
14.1.1;1 INTRODUCTION;164
14.1.2;2 THE MATHEMATICAL MODEL;164
14.1.3;3 THEORY AND DESCRIPTION OF THE SENSITIVITY ANALYSIS;165
14.1.4;4 RESULTS;167
14.1.5;5 CONCLUSION;169
14.1.6;ACKNOWLEDGMENTS;169
14.1.7;References;169
14.2;CHAPTER 25. A CONTROL STRATEGY FOR THE AC/DC POWER SYSTEM UNDER LARGE DISTURBANCES;170
14.2.1;INTRODUCTION;170
14.2.2;MATHEMATICAL MODEL OF THE SYSTEM;170
14.2.3;THB TIME-OPTIMAL (BANG-BANG) CONTROL;171
14.2.4;SWITCH CURVES IN STATE PLANE;171
14.2.5;DOUBLE-LOOP FEEDBACK CONTROL STRATEGY;172
14.2.6;THE IMPROVBMBNT ON DC CONTROL SYSTBM;173
14.2.7;DIGITAL SIMULATION RESULTS AND ANALYSIS;173
14.2.8;CONCLUSIONS;173
14.2.9;REFERENCE;174
14.3;CHAPTER 26. EFFECTS OF LOAD CHARACTERISTICS ON THE TRANSIENT STABILITY OF KEPCO'S SYSTEM;176
14.3.1;INTRODUCTION;176
14.3.2;LOAD REPRESENTATION;176
14.3.3;DIFFICULTIES IN APPLYING THE NEW LOAD MODEL TO THE KEPCO SYSTEM;178
14.3.4;EFFECT OF LOAD CHARACTERISTICS;179
14.3.5;CONCLUSION;181
14.3.6;REFERENCES;181
14.4;CHAPTER 27. A NEW APPROACH TO MID- AND LONG-TERM POWER SYSTEM ANALYSIS;182
14.4.1;INTRODUCTION;182
14.4.2;COMPUTATION REDUCTION ALGORITHM USING VOLTAGE SENSITIVITY MATRIX;183
14.4.3;MID and LONG-TERM MODEL of THE POWER SYSTEM;185
14.4.4;CASE STUDY and EVALUATION;186
14.4.5;CONCLUSION;186
14.4.6;REFERENCES;186
14.5;CHAPTER 28. FEATURE EXTRACTION OF LINE FLOW FLUCTUATION AND ITS APPLICATION TO DYNAMIC SECURITY DIAGNOSIS;188
14.5.1;INTRODUCTION;188
14.5.2;SURVEYED POWER SYSTEM AND ITS DYNAMICAL CHARACTERISTICS;189
14.5.3;FEATURE EXTRACTION OF LINE FLOW FLUCTUATION;189
14.5.4;APPLICATION OF PROPOSED FEATURE EXTRACTION TECHNIQUE TO DYNAMIC SECURITY DIAGNOSIS;192
14.5.5;CONCLUSION;193
14.5.6;REFERENCES;193
14.6;CHAPTER 29. ELECTROMECHANICAL DISTANCES FOR IDENTIFYING CONTINGENCY PROPAGATION IN TRANSIENT STABILITY STUDIES;194
14.6.1;1 INTRODUCTION;194
14.6.2;2 PROBLEM STATEMENT;194
14.6.3;3 INVESTIGATIONS;197
14.6.4;4 CONCLUSION;199
14.6.5;5 REFERENCES;199
14.7;CHAPTER 30. A NEW COHERENCE APPROACH OF GENERATORS FOR INVESTIGATION OF SLOW AND SYSTEM WIDE OSCILLATIONS IN LARGE POWER SYSTEMS;200
14.7.1;1. Introduction;200
14.7.2;2. Simplified structure preserving model of a power system;201
14.7.3;3. Validation of the model (MK);202
14.7.4;Conclusions;203
14.7.5;AcknowledgelDent;203
14.7.6;4. References;203
14.8;CHAPTER 31. A CONTROL MEASURE FOR PREVENTING AUTO-PARAMETRIC RESONANCE IN POWER SYSTEMS;206
14.8.1;INTRODUCTION;206
14.8.2;EXAMINATION OF CONTROL SCHEME;206
14.8.3;CONSTRUCTION OF CONTROL SCHEME;208
14.8.4;EFFECTIVENESS OF PROPOSED CONTROL SCHEME;209
14.8.5;CONCLUSION;210
14.8.6;REFERENCE;210
14.8.7;APPENDIX;210
15;PART 9: RELIABILITY AND PRODUCTION COSTING;212
15.1;CHAPTER 32. FUZZY OPTIMIZATION FOR ECONOMY-SECURITY COORDINATION IN POWER SYSTEM PLANNING;212
15.1.1;INTRODUCTION;212
15.1.2;POWER SYSTEM PLANNING USING ECONOMY AND SUPPLY RELIABILITY AS EVALUATION CRITERIA;213
15.1.3;COORDINATION OF ECONOMY AND RELIABILITY ON THE BASIS OF MEMBERSHIP FUNCTIONS;214
15.1.4;APPLICATION RESULT FOR TEST SYSTEM;216
15.1.5;CONCLUSION;216
15.1.6;REFERENCES;216
15.2;CHAPTER 33. EXPECTED POWER SYSTEM PRODUCTIONCOSTS USING LARGE DEVIATION ANDMIXTURE OF NORMALS APPROXIMATIONS;218
15.2.1;INTRODUCTION;218
15.2.2;FORMULATION;218
15.2.3;NUMERICAL EXAMPLE;219
15.2.4;CONCLUSION;220
15.2.5;ACKNOWLEDGEMENTS;220
15.2.6;REFERENCES;222
15.3;CHAPTER 34. PROBABILISTIC PRODUCTION COSTING SIMULATION MODEL BASED ON THE REAL ECONOMIC DISPATCH;224
15.3.1;INTRODUCTION;224
15.3.2;PROBABILISTIC OPTIMAL PRODUCTION COST;226
15.3.3;ECONOMIC DISPATCH;226
15.3.4;SAMPLE STUDY;226
15.3.5;CONCLUSION;227
15.3.6;ACKNOWLEDGEMENT;227
15.3.7;REFERENCES;227
16;PART 10: MODELING AND CONTROL OF POWER PLANTS;230
16.1;CHAPTER 35. ADVANCED TECHNIQUES IN AUTOMATION OF FLUIDIZED BED BOILERS;230
16.1.1;INTRODUCTION;230
16.1.2;IMPROVEMENT AND OPTIMIZATION OF COMBUSTION CONDITIONS;230
16.1.3;A DYNAMIC PROCESS MODEL;232
16.1.4;CONTROL;233
16.1.5;CONCLUSION;235
16.1.6;REFERENCES;235
16.1.7;APPENDIX;235
16.2;CHAPTER 36. ON THE MULTIVARIABLE ROBUST CONTROL OF A BOILER-TURBINE SYSTEM;236
16.2.1;INTRODUCTION;236
16.2.2;LINEARIZED MODEL AND MODELING ERRORS;236
16.2.3;BOILER-TURBINE CONTROL SYSTEM DESIGN;237
16.2.4;SIMULATION RESULTS;239
16.2.5;CONCLUSIONS;240
16.2.6;REFERENCES;240
16.3;CHAPTER 37. A HIERARCHICAL EXPERT SYSTEM FOR FAILURE DIAGNOSIS IN POWER PLANTS;242
16.3.1;INTRODUCTION;242
16.3.2;MODEL-BASED DIAGNOSIS;243
16.3.3;HIERARCHICAL, MODULAR SYSTEM;243
16.3.4;MILLING AND BURNING OF COAL;243
16.3.5;REAL-TIME APPLICATION;245
16.3.6;CONCLUSION;247
16.3.7;REFERENCES;247
16.4;CHAPTER 38. VARIABLE STRUCTURE CONTROL OF WATER TURBINE GOVERNING SYSTEM;248
16.4.1;INTRODUCTION;248
16.4.2;SYSTEM MODEL;248
16.4.3;VARIABLE STRUCTURE CONTROL;249
16.4.4;THE HYPERPLANE DESIGN USING USD TEST;249
16.4.5;SIMULATION RESULTS;250
16.4.6;CONCLUSIONS;251
16.4.7;REFERENCES;251
16.4.8;APPENDIX: NONLINEAR SIMPLEX METHOD;251
17;PART 11: GENERATION AND INTEGRATED EXPANSION PLANNING;254
17.1;CHAPTER 39. FUZZY DECISION-MAKING ON ELECTRIC ENERGY STRATEGY FOR LONG-TERM GENERATION EXPANSION PLANNING;254
17.1.1;INTRODUCTION;254
17.1.2;DECISION PROCEDURE OF FLP PROBLEM;255
17.1.3;DEFINITION OF FUZZY EQUALITY;256
17.1.4;OUTLINE OF THE LONG-TERM GENERATION MIX PLANNING PROBLEM;256
17.1.5;FORMULATION OF THE PLANNING PROBLEM;257
17.1.6;NUMERICAL EXAMPLES;257
17.1.7;CONCLUSION;258
17.1.8;REFERENCES;258
17.2;CHAPTER 40. POWER SYSTEM AND COGENERATION: AN OPTIMAL EXPANSION PLANNING;260
17.2.1;INTRODUCTION;260
17.2.2;THE MODEL;260
17.2.3;CASE STUDY;263
17.2.4;CONCLUSION;264
17.2.5;REFERENCES;264
17.3;CHAPTER 41. RELIABILITY EVALUATION OF GENERATION SYSTEMS INCLUDING ENERGY LIMITED UNITS—A CLUSTER BASED APPROACH;266
17.3.1;INTRODUCTION;266
17.3.2;CLUSTER BASED LOAD MODEL;267
17.3.3;THE METHOD;267
17.3.4;SYSTEM STUDIES;269
17.3.5;CONCLUSION;270
17.3.6;REFERENCES;271
17.4;CHAPTER 42. POWER SYSTEM MODELLING AND SIMULATION FOR INTEGRATED SYSTEM EXPANSION PLANNING;272
17.4.1;INTRODUCTION;272
17.4.2;SYSTEM CHARACTERISTICS;272
17.4.3;LOGIC OF OVERVIEW PLANNING;273
17.4.4;SIMULATION/SUBOPTIMIZATION;274
17.4.5;CONCLUSION;277
17.4.6;REFERENCES;277
17.5;CHAPTER 43 AN ADVANCED INTEGRATED SYSTEM FOR ELECTRIC ENERGY SUPPLY PLANNING;278
17.5.1;INTRODUCTION;278
17.5.2;ROLE OF ENERGY SUPPLY PLANNING;278
17.5.3;PROBLEMS WITH ENERGY SUPPLY PLANNING STUDIES;279
17.5.4;SYSTEM DEVELOPMENT STRATEGY AND POLICIES;279
17.5.5;BRIEF DESCRIPTION OF SYSTEM DESIGN;280
17.5.6;FEATUHES;281
17.5.7;EFFECTIVENESS;282
17.5.8;OBTAINED DATA;282
17.5.9;CONCLUSSION;283
17.5.10;ACKNOWLEDGEMENT;283
17.5.11;REFERENCE;283
18;PART 12: EMS CONTROL CENTERS;284
18.1;CHAPTER 44. NEW COMPUTER CONFIGURATION ANDMAJOR SOFTWARE REDESIGN FOR ONTARIOHYDRO'S ENERGY MANAGEMENT SYSTEM;284
18.1.1;INlRODUCTION;284
18.1.2;OVERVIEW OF SYSTEM CONFIGURATION;284
18.1.3;RELIABILITY/AVAILABILITY;285
18.1.4;DATA BASE MANAGEMENT;285
18.1.5;FAILOVER/RECOVERY;287
18.1.6;INTEGRATED SYSTEM CONSOLE(ISC);287
18.1.7;ALARM MANAGEMENT SOFIWARE;288
18.1.8;MAN MACHINE SUBSYSTEM (MMS);288
18.1.9;CONCLUSION;289
18.1.10;REFERENCE;289
18.2;CHAPTER 45. THE PACIFIC GAS & ELECTRIC COMPANY ENERGY MANAGEMENT SYSTEM OVERVIEW—UNIQUE FEATURES;290
18.2.1;INTRODUCTION;290
18.2.2;BASE APPLICATION SOFTWARE;290
18.2.3;NETWORK ANALYSIS APPLICATIONS SOFTWARE;291
18.2.4;DISPATCHER TRAINING SIMULATOR;293
18.2.5;SUMMARY;294
18.2.6;REFERENCES;294
18.2.7;ACKNOWLEDGEMENTS;294
18.3;CHAPTER 46. THE SCADA/EMS SYSTEM OF THE ITAIPU HYDROELECTRIC POWERPLANT;296
18.3.1;INTRODUCTION;296
18.3.2;SYSTEM FUNCTION;297
18.3.3;SCADA SYSTEM REQUIREMENTS;297
18.3.4;SYSTEM CONFIGURATION;297
18.3.5;SYSTEM TESTS AND ACCEPTANCE;300
18.3.6;PROJECT MANGEMENT;300
18.3.7;CLOSING REMARKS;300
18.3.8;REFERENCES;300
18.4;CHAPTER 47. IMPLEMENTATION OF ADVANCED POWER APPLICATION SOFTWARE TO KEPCO'S ENERGY MANAGEMENT SYSTEM;302
18.4.1;INTRODUCTION;302
18.4.2;AN OVERVIEW OF THE PAS;303
18.4.3;RTNA SEQUENCE;304
18.4.4;SNA SEQUENCE;305
18.4.5;DPF (DISPATCHER POWER FLOW);306
18.4.6;FIELD EXPERIENCE;306
18.4.7;CONCLUSION;306
18.4.8;REFERENCES;306
19;PART 13: POWER SYSTEM STABILIZERS;308
19.1;CHAPTER 48. A ROBUST SELF-TUNING POWER SYSTEM STABILIZER;308
19.1.1;INTRODUCTION;308
19.1.2;A ROBUST SELF-TUNING STABILIZER;309
19.1.3;SIMULATION RESULTS;310
19.1.4;CONCLUSION;311
19.1.5;REFERENCES;311
19.2;CHAPTER 49. NEW ANALYSIS AND TUNING OF STABILIZERS IN MULTIMACHINE POWER SYSTEMS;312
19.2.1;1. Introduction;312
19.2.2;2. Design Procedure;312
19.2.3;3. Selection of Feedback Structure;314
19.2.4;4. Approximation of LQ design;315
19.2.5;5. Conclusions;316
19.2.6;Acknowledgements;316
19.2.7;References;317
19.3;CHAPTER 50. OPTIMAL PSS-PARAMETER SELECTION ALGORITHM WITH NEW PERFORMANCE MEASURE;318
19.3.1;INTRODUCTION;318
19.3.2;DEFINITION OF A NEW PERFORMANCE MEASURE;318
19.3.3;THE GRADIENT OF THE PERFORMANCE WITH RESPECT TO PARAMETERS;319
19.3.4;CASE STUDY;320
19.3.5;CONCLUSION;322
19.3.6;APPENDIX;323
19.3.7;REFERENCES;323
19.4;CHAPTER 51. OPTIMAL SELECTION OF THE PARAMETERS OF POWER SYSTEM STABILIZER;324
19.4.1;INTRODUCTION;324
19.4.2;POWER SYSTEM MODEL;324
19.4.3;OPTIMAL PARAMETER SELECTION ALGORITHM;325
19.4.4;CASE STUDY;327
19.4.5;CONCLUSION;329
19.4.6;References;329
19.5;CHAPTER 52. APPLICATION OF FUZZY LOGIC CONTROL SCHEME FOR STABILITY ENHANCEMENT OF A POWER SYSTEM;330
19.5.1;INTRODUCTION;330
19.5.2;REVIEW OF FUZZY CONTROL SCHEME OF (HIMAMA AND NAKANO, 1988);330
19.5.3;PROPOSED FUZZY CONTROL SCHEME;331
19.5.4;APPLICATION OF PROPOSED FUZZY COTROL SCHEME;331
19.5.5;CONCLUSION;333
19.5.6;REFERENCES;333
19.6;CHAPTER 53. TRANSIENT STABILIZATION OF MULTIMACHINE POWER SYSTEMS BY VARIABLE STRUCTURE SYSTEM CONTROL;334
19.6.1;INTRODUCTION;334
19.6.2;DYNAMIC EQUATIONS OF POWER SYSTEMS;335
19.6.3;DESIGN OF VARIABLE STRUCTURE CONTROL;335
19.6.4;ROBUST VARIABLE STRUCTURE CONTROL;336
19.6.5;SIMULATING STUDY;336
19.6.6;CONCLUSION;337
19.6.7;REFERENCE;337
20;PART 14: SYSTEM PROTECTION AND DIGITAL RELAYS;338
20.1;CHAPTER 54. DIGITAL DIFFERENTIAL RELAY FOR TRANSMISSION LINE PROTECTION USING A CORRELATION METHOD;338
20.1.1;INTRODUCTION;338
20.1.2;PRINCIPLE OF THE CURRENT DIFFERENTIAL RELAY;338
20.1.3;FUNDAMENTAL FREQUENCY FILTERING;339
20.1.4;SIMULATlON;341
20.1.5;CONCLUSION;343
20.1.6;REFERENCES;343
20.1.7;APPENDIX;343
20.2;CHAPTER 55. DEVELOPMENT OF A DIGITAL PCM CURRENT DIFFERENTIAL RELAY WITH 64 kbits/sec. CO-DIRECTIONAL INTERFACE;344
20.2.1;1. INTRODUCTION;344
20.2.2;2. AUTOMATIC SAMPLING SYNCHRONIZATION;344
20.2.3;3. DUPLICATE COMMUNICATION CHANNELS;345
20.2.4;4. CONSTRUCTION OF THE DIGITAL CURRENT DIFFERENTIAL RELAY;346
20.2.5;5. TEST RESULT;346
20.2.6;CONCLUSION;347
20.2.7;REFERENCE;347
20.3;CHAPTER 56. DETECTION OF HIGH IMPEDANCE FAULTSUSING THE RANDOMNESS OF EVENHARMONIC CURRENTS;350
20.3.1;INTRODUCTION;350
20.3.2;CHARACTERISTICS OF ARCING FAULT CURRENTS;351
20.3.3;EVEN ORDER HARMONICS METHODS;351
20.3.4;FIELD TESTS;352
20.3.5;ANALYSIS OF FIELD TEST DATA;353
20.3.6;HARDWARE IMPLEMENTATION;355
20.3.7;CONCLUSIONS;355
20.3.8;REFERENCES;355
20.4;CHAPTER 57. AN ALGORITHM FOR FAULT-DISTANCE IDENTIFICATION IN TRANSMISSION LINE COMPUTER RELAYING: THEORY AND SIMULATION RESULTS;356
20.4.1;DERIVATION OF THE ALGORITHM;356
20.4.2;TESTING OF THE ALGORITHM;357
20.4.3;COMPARISON WITH OTHER ALGORITHMS;359
20.4.4;FREQUENCY RESPONSE;359
20.4.5;SUMMARY AND CONCLUSIONS;360
20.4.6;REFERENCES;360
20.4.7;LIST OF SYMBOLS;361
20.5;CHAPTER 58. A STUDY ON THE DIGITAL DISTANCE RELAYING SCHEME USING KALMAN FILTER;362
20.5.1;1. Introduction;362
20.5.2;2. Recursive forms of Kalman filter;363
20.5.3;3. Estimation of the fundamental frequency components;363
20.5.4;4. Extraction of the symmetrical components;364
20.5.5;5. Digital distance relaying scheme;364
20.5.6;6. Simulation;365
20.5.7;7. CONCLUSION;367
20.5.8;References;367
20.6;CHAPTER 59. A TECHNIQUE FOR DIGITAL RELAYS TO MEASURE FREQUENCY AND ITS RATE OF CHANGE;368
20.6.1;INTRODUCTION;368
20.6.2;DEVELOPMENT OF THE ALGORITHM;368
20.6.3;TESTING THE PROPOSED ALGORITHM;370
20.6.4;CONCLUSIONS;371
20.6.5;REFERENCES;371
20.7;CHAPTER 60. DERIVATION OF CORRECT RELAYING SIGNALS DURING INTERSYSTEM FAULTS FOR THE PROTECTION OF DOUBLE-CIRCUIT LINES;374
20.7.1;INTRODUCTION;374
20.7.2;STUDY SYSTEM AND FAULT CONDITIONS;374
20.7.3;ZERO-SEQUENCE CURRENT COMPENSATION AND IMPEDANCE CALCULATION;375
20.7.4;PHASE R1 TO EARTH FAULT;375
20.7.5;PHASE R1 TO PHASE R2 TO EARTH FAULT;377
20.7.6;PHASE S1 TO PHASE T2 FAULT;378
20.7.7;PHASE S1 TO PHASE T2 TO EARTH FAULT;379
20.7.8;CONCLUSION;380
20.7.9;APPENDIX 1;380
20.7.10;REFERENCES;380
21;PART 15: STATE ESTIMATION;382
21.1;CHAPTER 61. POWER SYSTEM STATE ESTIMATION INCLUDING INTERCONNECTED AC/DC SYSTEMS;382
21.1.1;INTRODUCTION;382
21.1.2;MATIIEMATICAL MODEL FOR STATE ESTIMAnON;382
21.1.3;STATE ESTIMATION OF THE AC POWER SYSTEM;383
21.1.4;STATE ESTIMAnON OF THE DC POWER SYSTM;383
21.1.5;STATE ESTIM:ATION OF THE INTERCONNECTED AC/DC SYSTEM;383
21.1.6;STATE ESTIM:ATION OF THE AC POWER SYSTEM BY SYSTEM DECOMPOSmON;384
21.1.7;SIMULATION AND RESULTS;384
21.1.8;CONCLUSIONS;386
21.1.9;REFERENCES;386
21.1.10;APPENDICES;386
21.2;CHAPTER 62. AN EFFICIENT ALGORITHM FOR COMPUTING THE WEIGHTED LEAST ABSOLUTE VALUE ESTIMATE IN POWER SYSTEM STATIC STATE ESTIMATION;388
21.2.1;INTRODUCTION;388
21.2.2;PRELIMINARY REMARKS;389
21.2.3;THE BCS ALGORITHM;389
21.2.4;COMPUTATIONAL CONSIDERATIONS;390
21.2.5;IEEE 30 BUS NETWORK;391
21.2.6;CONCLUSION;391
21.2.7;REFERENCES;392
22;PART 16: VOLTAGE STABILITY;394
22.1;CHAPTER 63. A STRUCTURAL STABILITY ANALYSIS OF VOLTAGE COLLAPSE ON POWER SYSTEMS;394
22.1.1;INTRODUCTION;394
22.1.2;THEORETICAL BACKGROUND AND MODEL DEVELOPMENT;395
22.1.3;STRUCTURAL WEAKNESS;398
22.1.4;REFERENCES;399
22.1.5;ACKNOWLEDGEMENT;399
22.2;CHAPTER 64. POSSIBILITY OF JUMP PHENOMENA FROM OPERABLE LOAD FLOW SOLUTION TO NONOPERABLE SOLUTION BY THE IMPACT OF SWITCHING-IN OF SHUNT CAPACITOR BANKS;400
22.2.1;1. INTRODUCTION;400
22.2.2;2. JUMP PHENOMENON IN TWO-BUS SYSTEM;401
22.2.3;3. JUMP PHENOMENON IN MULTI-BUS SYSTEM;403
22.2.4;4. DYNAMIC SIMULATION BY ANALOGUE SIMULATOR;404
22.2.5;5. CONCLUSION;405
22.2.6;References;405
22.3;CHAPTER 65. SENSITIVITY ANALYSIS OF TRANSIENT SECURITY OF POWER SYSTEMS WITH RESPECT TO REACTIVE ASPECTS;406
22.3.1;1. INTRODUCTION;406
22.3.2;2. THE EXTENDED EQUAL AREA CRITERION (EEAC);406
22.3.3;3. SENSITIVITY W.R.T. E;408
22.3.4;4. SENSITIVITY W.R.T OTHER REACTIVE ASPECTS;408
22.3.5;5. SIMULATION;409
22.3.6;6. CONCLUSION;410
22.3.7;7. REFERENCES;410
22.4;CHAPTER 66. SECURITY BASED ECONOMIC OPERATION OF ELECTRIC POWER SYSTEM;412
22.4.1;INTRODUCTION;412
22.4.2;ECONOMIC OPERATION;412
22.4.3;VOLTAGE SECURITY ASSESSMENT;414
22.4.4;NUMERICAL EXAMPLE;415
22.4.5;CONCLUSION;417
22.4.6;REFERENCE;417
23;PART 17: ELECTRICAL MACHINES AND EQIJIPMENT;418
23.1;CHAPTER 67. MAXIMUM LIKELIHOOD ESTIMATION OF HIGH FREQUENCY DISTRIBUTED TRANSFORMER PARAMETERS;418
23.1.1;INTRODUCTION;418
23.1.2;PROBLEM DEFINITION;418
23.1.3;ESTABLISHMENT OF THE TRANSFORMER MODEL;419
23.1.4;MATHEMATICAL TECHNIQUES IN TRANSFORMER PARAMETER ESTIMATION;420
23.1.5;ANALYSIS OF RESULTS;421
23.1.6;FREQUENCY DOMAIN ESTIMATION;421
23.1.7;TIME DOMAIN ESTIMATION;421
23.1.8;CONCLUSION;422
23.1.9;ACKNOWLEDGEMENT;422
23.1.10;REFERENCES;422
23.1.11;APPENDIX I;422
23.2;CHAPTER 68. THEORETICAL AND EXPERIMENTALINVESTIGATIONS ON CIRCUIT BREAKERTRANSIENT RECOVERY VOLTAGES;424
23.2.1;INTRODUCTION;424
23.2.2;THEORETICAL ANALYSIS;425
23.2.3;EXPERIMENTAL ANALYSIS;425
23.2.4;RESULTS;426
23.2.5;CONCLUSION;427
23.2.6;REFERENCES;427
23.2.7;ACKNOWLEDGEMENT;427
23.3;CHAPTER 69. THE COMPUTER ANALYSIS OF SWITCHING TRANSIENTS INVOLVING ARC MODEL;428
23.3.1;INTRODUCTION;428
23.3.2;MATHEMATICAL ARC MODEL FOR SWITCHING SURGE ANALYSIS;428
23.3.3;THE MODIFIED DOMMEL METHOD;429
23.3.4;DISTRIBUTION CABLE SYSTEM;429
23.3.5;SOLUTION TO SYSTEM EQUATIONS WITH DYNAMIC ARC;429
23.3.6;COMPUTER RESULTS;430
23.3.7;CONCLUSION;431
23.3.8;REFERENCES;431
23.3.9;APPENDIX A;431
23.4;CHAPTER 70. A STUDY ON HARMONIC ELIMINATION METHOD OF PWM INVERTER FED INDUCTION MOTOR SYSTEM USING WALSH SERIES;434
23.4.1;1. INTRODUCTION;434
23.4.2;2. PROPOSED SCHEME WITH A VIEW TO ELIMINATING HARMONICS IN PWM VOLTAGE SOURCR INVERTER USING WALSH FUNCTION;434
23.4.3;3. DETERMINATION OF SWITCHING ANGLE OF PWM VOLTAGE SOURCE INVERTER;436
23.4.4;4. SIMULATION AND EXPERIMENTAL RESULTS;438
23.4.5;5. CONCLUSIONS;439
23.4.6;APPENDIX;439
23.4.7;NOMENCLATURE;440
23.4.8;REFERENCES;440
23.5;CHAPTER 71. OPTIMAL PWM METHODS FORACTIVE POWER FILTERS;442
23.5.1;INTRODUCTION;442
23.5.2;BASIC OPERATION PRINCIPLE OF ACTIVE POWER FILTERS;442
23.5.3;OPTIMAL PWM METHOD FOR CURRENT SOURCE TYPE ACTIVE POWER FILTERS;443
23.5.4;OPTIMAL PWM METHOD FOR VOLTAGE SOURCE TYPE ACTIVE POWER FILTERS;445
23.5.5;CONCLUSION;447
23.5.6;REFERENCES;447
24;PART 18: CONTROL CENTER MAN-MACHINE INTERFACE;448
24.1;CHAPTER 72. A DESIGN TOOL FOR DISTRIBUTEDMAN-MACHINE INTERFACE OF REAL-TIMEPOWER SYSTEMS ANDPOWER PLANT SIMULATORS;448
24.1.1;INTRODUCTION;448
24.1.2;MAIN FEATURES;448
24.1.3;CONCLUSION;451
24.1.4;REFERENCES;452
24.2;CHAPTER 73. RULE-BASED APPROACH FOR AN AUTOMATIC DESIGN OF SUBSTATION DIAGRAMS FROM A GDL-NETWORK DESCRIPTION;454
24.2.1;INTRODUCTION;454
24.2.2;TYPE OF DATA BASE USED;454
24.2.3;SUBSTATION EXAMPLE;455
24.2.4;GRAPHIC DIAGRAM DESCRIPTION;458
24.2.5;AUTOMATIC DIAGRAM PREPARATION;458
24.2.6;PROGRAM;459
24.2.7;REFERENCES;459
25;PART 19: DISTRIBUTION SYSTEM CONTROL;460
25.1;CHAPTER 74. NEW RECONFIGURATION ALGORITHM FOR DISTRIBUTION SYSTEM—PRIORITY CONSTRAINED EMERGENCY SERVICE RESTORATION;460
25.1.1;INTRODUCTION;460
25.1.2;DESCRIPTION OF THE PROBLEM;460
25.1.3;SOLUTION ALGORITHM;461
25.1.4;NUMERICAL EXAMPLES;464
25.1.5;CONCLUSION;465
25.1.6;ACKNOWLEDGMENT;465
25.1.7;REFERENCES;465
25.1.8;APPENDIX;465
25.2;CHAPTER 75. AN INTEGRATED NETWORK INFORMATION AND SCADA SYSTEM FOR THE CONTROL OF PUBLIC DISTRIBUTION NETWORKS;466
25.2.1;INTRODUCTION;466
25.2.2;THE INTEGRATED SYSTEM;466
25.2.3;APPLICATIONS TO FEEDER CONTROL;468
25.2.4;PRACTICAL IMPLEMENTATION OF THE SYSTEM;470
25.2.5;CONCLUSION;470
25.2.6;REFERENCES;471
26;PART 20: LOAD FORECASTING AND MAINTENANCE SCHEDULING;472
26.1;CHAPTER 76. SHORT-TERM FEEDER LOAD FORECASTING: AN EXPERT SYSTEM USING FUZZY LOGIC;472
26.1.1;INTRODUCTION;472
26.1.2;AN OVERVIEW OF LOAD FORECASTING METHODS;472
26.1.3;FUZZY LOGIC APPROACH;473
26.1.4;SOFTWARE DESIGN;474
26.1.5;ILLUSTRATIVE EXAMPLE;475
26.1.6;CONCLUSIONS;477
26.1.7;ACKOWLEDGEMENT;477
26.1.8;REFERENCES;477
26.2;CHAPTER 77. AN EXPERT SYSTEM FOR SHORT TERM LOAD FORECASTING BY FUZZY DECISION;478
26.2.1;INTRODUCTION;478
26.2.2;CLASSIFICATION OF LOAD PATTERNS;478
26.2.3;ESTIMATION FOR ORDINARY DAYS;479
26.2.4;ESTIMATION FOR SPECIAL DAYS;479
26.2.5;RESULTS;483
26.2.6;CONCLUSION;483
26.2.7;REFERENCES;483
27;PART 21: TRANSMISSION EXPANSION PLANNING;484
27.1;CHAPTER 78. A SENSITIVITY ALGORITHM FOR THE LONG-TERM TRANSMISSION PLANNING FORMULATED WITH TWO-STEP OPTIMIZATION PROCEDURE;484
27.1.1;1. Introduction;484
27.1.2;2. Problem formulation of LTTP;484
27.1.3;3. Sensitivity algorithm;486
27.1.4;4. Case study;487
27.1.5;5. Conclusion;489
27.1.6;6. References;489
27.2;CHAPTER 79. ACTOR: A NEW TOOL TO EVALUATE THE ANNUAL ECONOMIC SAVINGS PROVIDED BY A REINFORCEMENT OF A SUBTRANSMISSION NETWORK;490
27.2.1;INTRODUCTION;490
27.2.2;WHY A NEW TOOL?;490
27.2.3;THE SUBTRANSMISSION NETWORK EXPANSION PLANNING PROBLEM SEEN BY THE PLANNER;491
27.2.4;A REVIEW OF MAIN AVAILABLE DATAS;491
27.2.5;MODELING;493
27.2.6;MAIN RESULTS;493
27.2.7;EXAMPLES OF UTILIZATION;493
27.2.8;CONCLUSION;494
27.2.9;REFERENCES;494
28;PART 22: EXPERT SYSTEM APPLICATIONS;496
28.1;CHAPTER 80. NETWORK RESTORATION EXPERT SYSTEM;496
28.1.1;INTRODUCTION;496
28.1.2;KNOWLEDGE BASE;496
28.1.3;INFERENCE AND EXPLANATION CCMFDNENTS;497
28.1.4;STAND ALONE EXPERT SYSTEM;497
28.1.5;DATABASE COUPLING;498
28.1.6;RESTORATION TRAINING SIMULATOR;498
28.1.7;CONCLUSION;499
28.1.8;ACKNOWLEDGEMEN;499
28.1.9;REFERENCES;499
28.2;CHAPTER 81. AN EXPERT SYSTEM FOR THE ELECTRIC POWER DISTRIBUTION SYSTEM DESIGN;500
28.2.1;INTRODUCTION;500
28.2.2;GEOGRAPHIC MAP MANAGEMENT SYSTEM;500
28.2.3;EXPERT SYSTEMS DEVELOPMENT;501
28.2.4;APPLICATION EXAMPLE;504
28.2.5;CUSTOMER APPLICATION DATA;504
28.2.6;CANDIDATE lRANSFORMER DATA;504
28.2.7;CANDIDATE POLE DATA;505
28.2.8;CONCLUSIONS;505
28.2.9;REFERENCES;505
28.3;CHAPTER 82. AN EXPERT SYSTEM USED IN POWER SYSTEM PROTECTION;506
28.3.1;INTRODUCTION;506
28.3.2;INFERENCE ENGINE;507
28.3.3;KNOWLEDGE BASE;507
28.3.4;SYSTEM IMPLEMENTATION;509
28.3.5;EXPLANATION CAPABILITY;509
28.3.6;OUTLINE OF THE SYSTEM;509
28.3.7;SYSTEM OPERATION;509
28.3.8;DESIGN EXAMPLE;510
28.3.9;CONCLUSION;510
28.3.10;REFERENCES;510
28.4;CHAPTER 83. PROSET: AN EXPERT SYSTEM FOR PROTECTIVE RELAY SETTING;512
28.4.1;INTRODUCTION;512
28.4.2;FRAME-BASED EXPERT SYSTEM;512
28.4.3;AN ENHANCED SYSTEM : PROSET;513
28.4.4;CONCLUSIONS;515
28.4.5;REFERENCES;516
29;PART 23: VOLTAGE REGULATION AND CONTROL;518
29.1;CHAPTER 84. A STUDY ON THE OPTIMAL OPERATION METHOD OF VOLTAGE REGULATOR AT DISTRIBUTION SUBSTATION;518
29.1.1;INTRODUCTION;518
29.1.2;OPTIMAL OPERATION METHOD OF VOLTAGE REGULATOR;518
29.1.3;APPLICATION AND COMPARISON;521
29.1.4;REFERENCES;522
29.2;CHAPTER 85. THE 77kV 40MVA MULTI-FUNCTION SVC (STATIC VAR COMPENSATOR) INSTALLED IN SUBSTATIONS;524
29.2.1;INTRODUCTION;524
29.2.2;CONFIGURATION OF SVC MAIN CIRCUITS;524
29.2.3;FEATURES OF CONSITUTING UNITS;525
29.2.4;FUNDAMENTAL CONTROL FUNCTION;525
29.2.5;RESULTS OF SIMULATED STUDIES;527
29.2.6;RESULTS OF EFFECTIVENESS VERIFICATION;528
29.2.7;CONCLUSION;528
29.2.8;REFERENCES;528
29.3;CHAPTER 86. OPTIMAL DESIGN OF AN AUTOMATICVOLTAGE REGULArrOR FORSTATIC VAR SYSTEMS;530
29.3.1;INTRODUCTION;530
29.3.2;STATIC VAR SYSTEMS;531
29.3.3;MODEL STRUCTURE AND CONTROL OF SVS;531
29.3.4;SIMULATION OF THE STATIC VAR SYSTEM;532
29.3.5;CONCLUSION;534
29.3.6;BIBLIOGRAPHY;534
29.3.7;APPENDIX;535
30;PART 24: SYSTEM OPERATOR TRAINING;536
30.1;CHAPTER 87. OPERATOR TRAINING USING PLANNED INCIDENTS IN THE POWER SYSTEM;536
30.1.1;INTRODUCTION;536
30.1.2;SUMMARY OF PROBLEM;537
30.1.3;CLOSING REMARK;539
30.2;CHAPTER 88. POWER SYSTEM SIMULATOR FOR REALISTIC DISPATCHER TRAINING;540
30.2.1;INTRODUCTION;540
30.2.2;SYSTEM SOLUTION;541
30.2.3;NETWORK SIMULATOR;542
30.2.4;SEQUENCE OF TRAINING;543
30.2.5;CONCLUSIONS;544
30.2.6;REFERENCES;544
31;PART 25: POWER SYSTEM SIMULATORS;546
31.1;CHAPTER 89. DEVELOPMENT OF HIGH PRECISION POWERSYSTEM SIMULATOR;546
31.1.1;INTRODUCTION;546
31.1.2;CONFIGURATION OF SIMULATOR;546
31.1.3;DEVELOPEMENT OF ELEMENT MODEL;547
31.1.4;SIMULATION AND SOFTWARE;549
31.1.5;EXAMPLE OF APPLICATION;550
31.1.6;CONCLUSION;551
31.1.7;REFERENCES;551
31.2;CHAPTER 90. FAST DYNAMIC SIMULATION OF POWER SYSTEMS USING MULTIPLE MICROCOMPUTERS;552
31.2.1;INTRODUCTION;552
31.2.2;SYSTEM MODELLING;553
31.2.3;PROGRAM DEVELOPMENT;554
31.2.4;HARDWARE CONSTRUCTION;554
31.2.5;INTEGRATION ALGORITHM;554
31.2.6;COMMENTS AND CONCLUSIONS;555
31.2.7;REFERENCES;555
32;AUTHOR INDEX;558
33;KEYWORD INDEX;560
34;SYMPOSIA VOLUMES;564
35;WORKSHOP VOLUMES;565