Agarwal / Jain / Poonia | Deep Learning Techniques for Biomedical and Health Informatics | Buch | 978-0-12-819061-6 | sack.de

Buch, Englisch, 367 Seiten, Format (B × H): 192 mm x 236 mm, Gewicht: 796 g

Agarwal / Jain / Poonia

Deep Learning Techniques for Biomedical and Health Informatics


Erscheinungsjahr 2020
ISBN: 978-0-12-819061-6
Verlag: Elsevier Science Publishing Co Inc

Buch, Englisch, 367 Seiten, Format (B × H): 192 mm x 236 mm, Gewicht: 796 g

ISBN: 978-0-12-819061-6
Verlag: Elsevier Science Publishing Co Inc


Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing.

Agarwal / Jain / Poonia Deep Learning Techniques for Biomedical and Health Informatics jetzt bestellen!

Zielgruppe


<p>Biomedical engineers, researchers in data analytics, Big Data, health care management and intelligent systems. </p>

Weitere Infos & Material


Part I: Deep Learning for Biomedical Engineering and Health Informatics 1. Introduction to Deep Learning and Health Informatics 2. A survey on deep learning algorithms for biomedical engineering 3. Machine learning and deep learning for Biomedical and Health Informatics 4. Deep learning for bioinformatics and drug discovery 5. Deep learning for Clinical Decision Support Systems 6. Deep learning for efficient Patients disease diagnosis and monitoring systems 7. Deep learning based methods for the Prediction of disease 8. Deep learning / Convolutional Neural Networks for Lung Pattern Analysis 9. Recommender systems for Biomedical and Health informatics

Part II: Deep Learning and Electronics Health Records 10. Deep Learning with Electronic Health Records (EHR) 11. Health Data Structures and Management 12. Deep Patient Similarity Learning with EHR 13. Natural Language Processing, Electronic Health Records, and Clinical Research 14. Healthcare Informatics to analyze patient health records to enable better clinical decision making and improved healthcare outcomes

Part III: Deep Learning for Medical Image Processing 15. Machine Learning in Bio-medical Signal and Medical image processing 16. Deep Learning for Medical Image Recognition 17. Unsupervised Deep Feature Representations Learning for Bio-medical Image analysis 18. Deep learning for optimizing medical big data 19. Deep learning for Brain Image Analysis 20. Deep Learning for Automated Brain Tumor Segmentation in MRI Images 21. Deep Learning and the Future of Biomedical Image Analysis


Jain, Lakhmi C.
Lakhmi C. Jain, BE(Hons), ME, PhD, Fellow (IE Australia) is with the Faculty of Education, Science, Technology & Mathematics at the University of Canberra, Australia and the University of Technology Sydney, Australia. He is a Fellow of the Institution of Engineers Australia.

Professor Jain founded the KES International for providing a professional community the opportunities for publications, knowledge exchange, cooperation and teaming. Involving around 5,000 researchers drawn from universities and companies world-wide, KES facilitates international cooperation and generate synergy in teaching and research. KES regularly provides networking opportunities for professional community through one of the largest conferences of its kind in the area of KES.
www.kesinternational.org

His interests focus on the artificial intelligence paradigms and their applications in complex systems, security, e-education, e-healthcare, unmanned air vehicles and intelligent agents.

Sharma, Manisha
Currently teaching at CCT, University of Rajasthan. Worked as Associate Professor(Computer Science) in Department of Computer Science, Apaji Institute, Banasthali University. Worked as Sr. Assistant Professor and Assistant Professor(CS) in Department of Computer Science, Apaji Institute, Banasthali University. Worked as Programmer in Department of Computer Science, Apaji Institute, Banasthali University.

Agarwal, Basant
Dr. Basant Agarwal works as an Assistant Professor at the Indian Institute of Information Technology Kota (IIIT-Kota), India, which is an Institute of National Importance. He holds a Ph.D. and M.Tech. from the Department of Computer Science and Engineering, Malaviya National Institute of Technology Jaipur, India. He has more than 9 years of experience in research and teaching. He has worked as a Postdoc Research Fellow at the Norwegian University of Science and Technology (NTNU), Norway, under the prestigious ERCIM (European Research Consortium for Informatics and Mathematics) fellowship in 2016. He has also worked as a Research Scientist at Temasek Laboratories, National University of Singapore (NUS), Singapore. His research interest include Artificial Intelligence, Cyber physical systems, Text mining, Natural Language Processing, Machine learning, Deep learning, Intelligent Systems, Expert Systems and related areas.

Poonia, Ramesh Chandra
Working at Amity University, Jaipur, Rajasthan as Associate Professor in Amity Institute of Information Technology. Worked with Jaipur National University, Jaipur, Rajasthan as Assistant Professor in Department of Computer Science and Engineering. Worked with Stani Memorial College of Engineering and Technology, Phagi (Jaipur) as a Lecturer in the department of IT. Worked with Sri Balaji College of Engineering and Technology, Jaipur as a Lecturer in the department of IT. Worked with Mahrishi Computer & Management College, Sadulpur, Churu as a Lecturer in the Computer department.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.