Advances in Quantum Chemistry | E-Book | sack.de
E-Book

E-Book, Englisch, 348 Seiten

Advances in Quantum Chemistry

E-Book, Englisch, 348 Seiten

ISBN: 978-0-08-088785-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area.
* Publishes articles, invited reviews and proceedings of major international conferences and workshops
* Written by leading international researchers in quantum and theoretical chemistry
* Highlights important interdisciplinary developments
Advances in Quantum Chemistry jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Advances in Quantum Chemistry Volume 56;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;10
6;Contributors;12
7;Chapter 1. Multireference and Spin–Orbit Calculations on Photodissociations of Hydrocarbon Halides;14
7.1;1. Introduction;15
7.2;2. Computational Methods;16
7.3;3. Photodissociation of Aryl Halides;17
7.3.1;3.1. Monohalobenzenes and heavy atomic effect;17
7.3.2;3.2. Bromobenzene, dibromobenzene, and 1,3,5-tribromobenzene and bromine substituent effect;20
7.3.3;3.3. Photon energy effect on the dissociation channels: chlorobenzene dissociation at 193, 248, and 266 nm;21
7.3.4;3.4. Chlorobenzene, chlorotoluene, and methyl substituent and rotation effects;24
7.4;4. Photodissociation Processes of Halomethane;27
7.4.1;4.1. Bromoiodomethane (CH2BrI);27
7.4.2;4.2. Dichloromethane (CH2Cl2);32
7.4.3;4.3. Diiodomethane (CH2I2);34
7.5;5. Conclusions;38
7.6;Acknowledgments;39
7.7;References;39
8;Chapter 2. Quantum Linear Superposition Theory for Chemical Processes: A Generalized Electronic Diabatic Approach;44
8.1;1. Introduction;45
8.2;2. Basic Quantum Mechanics and Chemical Processes;46
8.3;3. Basic Space–Time-Projected Quantum Formalism;53
8.3.1;3.1. Time-projected formalism;53
8.3.2;3.2. Configuration space basis;54
8.4;4. Abstract Quantum Formalism;58
8.4.1;4.1. Schrödinger equation in configuration space;59
8.4.2;4.2. Electronuclear configuration space;60
8.4.3;4.3. Hamiltonians;61
8.4.4;4.4. Abstract generalized electronic diabatic model;64
8.5;5. Semiclassical Models;68
8.5.1;5.1. Class I models: a-BO and GED schemes;70
8.5.2;5.2. Class II models;72
8.6;6. The AO Ansatz: Nodal Patterns;75
8.6.1;6.1. Nodal patterns;76
8.6.2;6.2. Mapping a chemical reaction D-PES;83
8.6.3;6.3. Generalized many-state reactivity framework;85
8.7;7. Algorithms: Comments and Proposal;88
8.7.1;7.1. Nodal patterns algorithm;89
8.7.2;7.2. Diabatic (ghost) orbital algorithm;90
8.7.3;7.3. Standard BO and diabatization procedures;93
8.7.4;7.4. How far from exact representations are GED-BO schemes?;95
8.7.5;7.5. The Jahn–Teller effect and linear superposition principle;97
8.8;8. Discussion;98
8.9;Acknowledgments;100
8.10;Appendix;101
8.11;References;105
9;Chapter 3. Exact Signal–Noise Separation by Froissart Doublets in Fast Padé Transform for Magnetic Resonance Spectroscopy;108
9.1;1. Introduction;109
9.2;2. Rational Response Function to Generic External Perturbations;110
9.3;3. The Exact Solution for the General Harmonic Inversion Problem;112
9.4;4. Delayed Time Series;113
9.5;5. Delayed Green Function;115
9.6;6. The Key Prior Knowledge: Internal Structure of Time Signals;117
9.7;7. The Rutishauser Quotient–Difference Recursive Algorithm;120
9.8;8. The Gordon Product–Difference Recursive Algorithm;124
9.9;9. Delayed Lanczos Continued Fractions;130
9.10;10. Delayed Padé–Lanczos Approximant;137
9.11;11. Fast Padé Transform FPT(–) Outside the Unit Circle;140
9.12;12. Fast Padé Transform FPT(+) Inside the Unit Circle;145
9.13;13. Signal–Noise Separation via Froissart Doublets (Pole–Zero Cancellations);150
9.14;14. Critical Importance of Poles and Zeros in Generic Spectra;151
9.15;15. Spectral Representations via Padé Poles and Zeros: pFPT(±) and zFPT(±);152
9.16;16. Padé Canonical Spectra;153
9.17;17. Signal–Noise Separation: Exclusive Reliance upon Resonant Frequencies;154
9.18;18. Model Reduction Problem via Padé Canonical Spectra;155
9.19;19. Denoising Froissart Filter;156
9.20;20. Signal–Noise Separation: Exclusive Reliance upon Resonant Amplitudes;156
9.21;21. Padé Partial Fraction Spectra;160
9.22;22. Model Reduction Problem via Padé Partial Fraction Spectra;161
9.23;23. Disentangling Genuine from Spurious Resonances;162
9.24;24. Results;163
9.25;25. Conclusion;187
9.26;Acknowledgment;190
9.27;References;190
10;Chapter 4. Reflections on Formal Density Functional Theory;194
10.1;1. Introduction;195
10.2;2. The Hohenberg–Kohn Construction of an Exact Density Functional and Its Extensions;196
10.2.1;2.1. Review of the Hohenberg–Kohn construction of an exact density functional;197
10.2.2;2.2. Nonuniversal density-like functionals satisfying a variational principle;202
10.2.3;2.3. Functionals of the Hartree–Fock density;205
10.2.4;2.4. Nonuniversal functionals of the density containing an explicit external potential-dependent part;207
10.3;3. Generalizations of The Kohn–Sham Density Functional Formulation: Inclusion of Exact Exchange;208
10.3.1;3.1. Review of Kohn–Sham theory as a constrained search formulation of the kinetic energy functional;209
10.3.2;3.2. Application of the Kohn–Sham formalism to the exact Hartree–Fock energy;213
10.3.3;3.3. Kohn–Sham exchange theory;216
10.3.4;3.4. Generalizations of the Kohn–Sham exchange formalism to an exact density functional theory;218
10.3.5;3.5. Further generalizations to orbital-dependent Kohn–Sham formulations;219
10.4;4. Concluding Remarks;221
10.5;Acknowledgments;228
10.6;References;228
11;Chapter 5. Multiple, Localized, and Delocalized/Conjugated Bonds in the Orbital Communication Theory of Molecular Systems;230
11.1;1. Introduction;230
11.2;2. Entropic Descriptors of Molecular Information Channels in Orbital Resolution;233
11.3;3. Illustrative Application to Localized Bonds in Hydrides;239
11.4;4. Atom Promotion in Hydrides;243
11.5;5. One- and Two-Electron Approaches to Conjugated p-Bonds in Hydrocarbons;246
11.6;6. Model Multiple Bonds;251
11.7;7. p-Bond Conjugation;254
11.8;8. Concluding Remarks;259
11.9;References;261
12;Chapter 6. Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion–Atom Collisions;264
12.1;1. Introduction;265
12.2;2. Simultaneous Projectile Ionization and Target Excitation and/or Ionization;266
12.3;3. Adiabatic Hypothesis for Resonance Massey Peak;269
12.4;4. Electron Loss Processes and Stopping Powers of Heavy Ions;272
12.5;5. Channel Scattering States and Perturbations;273
12.6;6. The T-Matrix for Short-Range Interactions;275
12.6.1;6.1. First Born approximation;275
12.7;7. The T-Matrix for Long-Range Interactions;276
12.7.1;7.1. Boundary-corrected first Born approximation;278
12.8;8. Defining, Exact Sum Over all the Target Final States;281
12.8.1;8.1. The mass approximation for heavy particle collisions;282
12.9;9. Practical, Exact Sum Over Dominant Target True Final States;285
12.10;10. Acceleration of Convergence for Final States;287
12.11;11. Closure Approximation;292
12.12;12. Corrected Closure Approximation;298
12.13;13. Comparison Between Theories and Experiments;301
12.13.1;13.1. Testing the CB1-4B method;305
12.13.2;13.2. Testing the ACB1-4B method;319
12.13.3;13.3. Testing the CCA method;324
12.14;14. Conclusion;328
12.15;Acknowledgment;330
12.16;References;330
13;Index;336


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.