E-Book, Englisch, 348 Seiten
ISBN: 978-0-08-088785-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
* Publishes articles, invited reviews and proceedings of major international conferences and workshops
* Written by leading international researchers in quantum and theoretical chemistry
* Highlights important interdisciplinary developments
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in Quantum Chemistry Volume 56;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;10
6;Contributors;12
7;Chapter 1. Multireference and Spin–Orbit Calculations on Photodissociations of Hydrocarbon Halides;14
7.1;1. Introduction;15
7.2;2. Computational Methods;16
7.3;3. Photodissociation of Aryl Halides;17
7.3.1;3.1. Monohalobenzenes and heavy atomic effect;17
7.3.2;3.2. Bromobenzene, dibromobenzene, and 1,3,5-tribromobenzene and bromine substituent effect;20
7.3.3;3.3. Photon energy effect on the dissociation channels: chlorobenzene dissociation at 193, 248, and 266 nm;21
7.3.4;3.4. Chlorobenzene, chlorotoluene, and methyl substituent and rotation effects;24
7.4;4. Photodissociation Processes of Halomethane;27
7.4.1;4.1. Bromoiodomethane (CH2BrI);27
7.4.2;4.2. Dichloromethane (CH2Cl2);32
7.4.3;4.3. Diiodomethane (CH2I2);34
7.5;5. Conclusions;38
7.6;Acknowledgments;39
7.7;References;39
8;Chapter 2. Quantum Linear Superposition Theory for Chemical Processes: A Generalized Electronic Diabatic Approach;44
8.1;1. Introduction;45
8.2;2. Basic Quantum Mechanics and Chemical Processes;46
8.3;3. Basic Space–Time-Projected Quantum Formalism;53
8.3.1;3.1. Time-projected formalism;53
8.3.2;3.2. Configuration space basis;54
8.4;4. Abstract Quantum Formalism;58
8.4.1;4.1. Schrödinger equation in configuration space;59
8.4.2;4.2. Electronuclear configuration space;60
8.4.3;4.3. Hamiltonians;61
8.4.4;4.4. Abstract generalized electronic diabatic model;64
8.5;5. Semiclassical Models;68
8.5.1;5.1. Class I models: a-BO and GED schemes;70
8.5.2;5.2. Class II models;72
8.6;6. The AO Ansatz: Nodal Patterns;75
8.6.1;6.1. Nodal patterns;76
8.6.2;6.2. Mapping a chemical reaction D-PES;83
8.6.3;6.3. Generalized many-state reactivity framework;85
8.7;7. Algorithms: Comments and Proposal;88
8.7.1;7.1. Nodal patterns algorithm;89
8.7.2;7.2. Diabatic (ghost) orbital algorithm;90
8.7.3;7.3. Standard BO and diabatization procedures;93
8.7.4;7.4. How far from exact representations are GED-BO schemes?;95
8.7.5;7.5. The Jahn–Teller effect and linear superposition principle;97
8.8;8. Discussion;98
8.9;Acknowledgments;100
8.10;Appendix;101
8.11;References;105
9;Chapter 3. Exact Signal–Noise Separation by Froissart Doublets in Fast Padé Transform for Magnetic Resonance Spectroscopy;108
9.1;1. Introduction;109
9.2;2. Rational Response Function to Generic External Perturbations;110
9.3;3. The Exact Solution for the General Harmonic Inversion Problem;112
9.4;4. Delayed Time Series;113
9.5;5. Delayed Green Function;115
9.6;6. The Key Prior Knowledge: Internal Structure of Time Signals;117
9.7;7. The Rutishauser Quotient–Difference Recursive Algorithm;120
9.8;8. The Gordon Product–Difference Recursive Algorithm;124
9.9;9. Delayed Lanczos Continued Fractions;130
9.10;10. Delayed Padé–Lanczos Approximant;137
9.11;11. Fast Padé Transform FPT(–) Outside the Unit Circle;140
9.12;12. Fast Padé Transform FPT(+) Inside the Unit Circle;145
9.13;13. Signal–Noise Separation via Froissart Doublets (Pole–Zero Cancellations);150
9.14;14. Critical Importance of Poles and Zeros in Generic Spectra;151
9.15;15. Spectral Representations via Padé Poles and Zeros: pFPT(±) and zFPT(±);152
9.16;16. Padé Canonical Spectra;153
9.17;17. Signal–Noise Separation: Exclusive Reliance upon Resonant Frequencies;154
9.18;18. Model Reduction Problem via Padé Canonical Spectra;155
9.19;19. Denoising Froissart Filter;156
9.20;20. Signal–Noise Separation: Exclusive Reliance upon Resonant Amplitudes;156
9.21;21. Padé Partial Fraction Spectra;160
9.22;22. Model Reduction Problem via Padé Partial Fraction Spectra;161
9.23;23. Disentangling Genuine from Spurious Resonances;162
9.24;24. Results;163
9.25;25. Conclusion;187
9.26;Acknowledgment;190
9.27;References;190
10;Chapter 4. Reflections on Formal Density Functional Theory;194
10.1;1. Introduction;195
10.2;2. The Hohenberg–Kohn Construction of an Exact Density Functional and Its Extensions;196
10.2.1;2.1. Review of the Hohenberg–Kohn construction of an exact density functional;197
10.2.2;2.2. Nonuniversal density-like functionals satisfying a variational principle;202
10.2.3;2.3. Functionals of the Hartree–Fock density;205
10.2.4;2.4. Nonuniversal functionals of the density containing an explicit external potential-dependent part;207
10.3;3. Generalizations of The Kohn–Sham Density Functional Formulation: Inclusion of Exact Exchange;208
10.3.1;3.1. Review of Kohn–Sham theory as a constrained search formulation of the kinetic energy functional;209
10.3.2;3.2. Application of the Kohn–Sham formalism to the exact Hartree–Fock energy;213
10.3.3;3.3. Kohn–Sham exchange theory;216
10.3.4;3.4. Generalizations of the Kohn–Sham exchange formalism to an exact density functional theory;218
10.3.5;3.5. Further generalizations to orbital-dependent Kohn–Sham formulations;219
10.4;4. Concluding Remarks;221
10.5;Acknowledgments;228
10.6;References;228
11;Chapter 5. Multiple, Localized, and Delocalized/Conjugated Bonds in the Orbital Communication Theory of Molecular Systems;230
11.1;1. Introduction;230
11.2;2. Entropic Descriptors of Molecular Information Channels in Orbital Resolution;233
11.3;3. Illustrative Application to Localized Bonds in Hydrides;239
11.4;4. Atom Promotion in Hydrides;243
11.5;5. One- and Two-Electron Approaches to Conjugated p-Bonds in Hydrocarbons;246
11.6;6. Model Multiple Bonds;251
11.7;7. p-Bond Conjugation;254
11.8;8. Concluding Remarks;259
11.9;References;261
12;Chapter 6. Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion–Atom Collisions;264
12.1;1. Introduction;265
12.2;2. Simultaneous Projectile Ionization and Target Excitation and/or Ionization;266
12.3;3. Adiabatic Hypothesis for Resonance Massey Peak;269
12.4;4. Electron Loss Processes and Stopping Powers of Heavy Ions;272
12.5;5. Channel Scattering States and Perturbations;273
12.6;6. The T-Matrix for Short-Range Interactions;275
12.6.1;6.1. First Born approximation;275
12.7;7. The T-Matrix for Long-Range Interactions;276
12.7.1;7.1. Boundary-corrected first Born approximation;278
12.8;8. Defining, Exact Sum Over all the Target Final States;281
12.8.1;8.1. The mass approximation for heavy particle collisions;282
12.9;9. Practical, Exact Sum Over Dominant Target True Final States;285
12.10;10. Acceleration of Convergence for Final States;287
12.11;11. Closure Approximation;292
12.12;12. Corrected Closure Approximation;298
12.13;13. Comparison Between Theories and Experiments;301
12.13.1;13.1. Testing the CB1-4B method;305
12.13.2;13.2. Testing the ACB1-4B method;319
12.13.3;13.3. Testing the CCA method;324
12.14;14. Conclusion;328
12.15;Acknowledgment;330
12.16;References;330
13;Index;336