Advances in Microbial Physiology | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 66, 504 Seiten

Reihe: Advances in Microbial Physiology

Advances in Microbial Physiology


1. Auflage 2015
ISBN: 978-0-12-803333-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band Volume 66, 504 Seiten

Reihe: Advances in Microbial Physiology

ISBN: 978-0-12-803333-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This volumeÿof Advances in Microbial Physiologyÿcontinues the long tradition of topical and important reviews in microbiology - Contributions from leading authorities - Informs and updates on all the latest developments in the field

Advances in Microbial Physiology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Chapter Two A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes
Ralf Rabus*; Sofia S. Venceslau†; Lars Wöhlbrand*; Gerrit Voordouw‡; Judy D. Wall§,¶; Inês A.C. Pereira†,1    * Institute for Chemistry & Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
† Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
‡ Department of Biological Sciences, University of Calgary, Calgary, Canada
§ Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
¶ Ecosystems and Networks Integrated with Genes and Molecular Assemblies, Berkeley, California, USA
1 Corresponding author: email address: ipereira@itqb.unl.pt Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored. Keywords Sulphate-reducing prokaryotes Sulphate-reducing bacteria Sulphate reduction Anaerobic respiration Marine sediments Hydrocarbon degradation Metal reduction Souring Microbially influenced corrosion Microbial energy conversion Genomics Genetics Electron transfer Ecophysiology Microbiome Habitats Systems biology Abbreviations ANME anaerobic methanotrophs AOM anaerobic oxidation of methane Apr APS reductase APS adenosine 5'-phosphosulphate ATP adenosine triphosphate nucleotide CMIC chemical microbially influenced corrosion DMSP dimethylsulphoniopropionate Dsr dissimilatory sulphite reductase EMIC electrical microbially influenced corrosion Etf electron-transferring flavoprotein FBEB flavin-based electron bifurcation Fdh formate dehydrogenase FHL formate:hydrogen lyase Flx flavin oxidoreductase Hdr heterodisulphide reductase HHQ 1,2,4-trihydroxybenzene Hmc high molecular mass cytochrome c complex LDET long-distance electron transfer Ldh lactate dehydrogenase LGT lateral gene transfer Mcr methyl-coenzyme M reductase MIC microbially influenced corrosion MICC microbially induced concrete corrosion MPN most probable number MTB magnetotactic bacteria Nfn NAD(H)/NADP(H) transhydrogenase Nhc nine-haem cytochrome complex NIWR near-injection wellbore region Ohc octahaem cytochrome complex OMZ oxygen minimum zone PFL pyruvate-formate lyase PFOR pyruvate:ferredoxin oxidoreductase PWRI produced water reinjection Qmo quinone-interacting membrane oxidoreductase complex Qrc quinone-reductase complex Rnf Rhodobacter nitrogen fixation complex ROS reactive oxygen species Sat ATP sulphurylase or sulphate adenylyltransferase SLIC sequence ligation-independent cloning SMTZ sulphate-methane-transition zone SOB sulphur-oxidizing bacteria SRB sulphate-reducing bacterium(a) SRP sulphate-reducing prokaryote(s) TMA trimethylamine TMAO trimethylamine-N-oxide Tmc tetraheme cytochrome membrane complex TpIc3 type I cytochrome c3 TRAP tripartite ATP-independent periplasmic 1 Introduction
Microbial sulphate reduction is a process of enormous environmental and biogeochemical relevance, which is mainly associated with marine environments due to their high sulphate levels. Seawater sulphate concentrations have risen over geological time due to oxidative weathering of sulphide minerals on land, and there is an intimate connection between oceanic sulphate levels and the oxygen content of the earth's atmosphere (Berner & Canfield, 1989; Farquhar, Wu, Canfield, & Oduro, 2010). Marine sulphate constitutes the largest mobile sulphur reservoir in our planet, corresponding to an oxidant pool that is one order of magnitude larger than that of atmospheric oxygen (Hayes & Waldbauer, 2006). The sulphur cycle has, therefore, a direct impact on the redox balance of the oceans and atmosphere (Canfield, 2004; Halevy, Peters, & Fischer, 2012). Microbial reduction of sulphate to sulphide initiates and sustains the sulphur cycle and is one of the major biological processes in marine sediments (Jørgensen, 1982). A recent study of global marine sulphate reduction rates (SRRs) estimated that 11.3 Tmol of sulphate is reduced per year, corresponding to the oxidation of up to 30% of the organic carbon flux to the sea floor (Bowles, Mogollón, Kasten, Zabel, & Hinrichs, 2014). Microbial sulphate reduction induces a large mass-dependent fractionation between sulphate and sulphide and is the major process determining sulphur isotope fractionations preserved in geological records, which provide information on the oxidation state of the Earth's atmosphere starting in the early Proterozoic (Farquhar, Bao, & Thiemens, 2000; Johnston, 2011). For these reasons, sulphate-reducing prokaryotes (SRP) play a key role in our understanding of the biogeochemical sulphur and carbon cycles. SRP are a heterogeneous group of anaerobic organisms that have the ability to respire sulphate, that is, to use sulphate as terminal electron acceptor for the oxidation of organic compounds or hydrogen, in a dissimilatory process that leads to the production of high levels of sulphide. Most of this sulphide is reoxidized by chemolithotrophic sulphur bacteria under oxic conditions or phototrophic sulphur bacteria under anoxic conditions, forming the basis of the biological sulphur cycle. The activity of SRP has important economic and environmental impact, mainly through their production of sulphide, which is both toxic and corrosive, but can also give rise to beneficial processes. Microbially induced corrosion of steel, concrete and iron surfaces is a problem of enormous economic consequences where SRP have been implicated, particularly in technical marine structures (Barton & Fauque,...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.