Abramczyk | Introduction to Laser Spectroscopy | E-Book | sack.de
E-Book

E-Book, Englisch, 384 Seiten

Abramczyk Introduction to Laser Spectroscopy


1. Auflage 2005
ISBN: 978-0-08-045525-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 384 Seiten

ISBN: 978-0-08-045525-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented.
Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.
* A comprehensive course that combines theory and practice
* Includes a systematic and comprehensive description for key laser types
* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy

Abramczyk Introduction to Laser Spectroscopy jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;copyright;4
2;front matter;7
3;Acknowledgements;7
4;Preface;9
5;table of contents;11
6;body;15
7;1. Basic Physics of Lasers;15
7.1;1.1. SPONTANEOUS AND STIMULATED TRANSITIONS. EINSTEIN COEFFICIENTS. PROPERTIES OF STIMULATED RADIATION;15
7.2;1.2. LASER OPERATION BASICS;21
7.3;1.3. POPULATION INVERSION;25
7.4;1.4. AMPLIFICATION AND SATURATION;29
7.5;REFERENCES 1;31
8;2. Distribution of the Electromagnetic Field in the Optical Resonator;33
8.1;2.1. LONGITUDINAL MODES;33
8.2;2.2. QUALITY FACTOR OF RESONATOR RELATIONSHIP BETWEEN LINEWIDTH OF STIMULATED EMISSION AND RESONATOR QUALITY FACTOR;35
8.3;2.3. TRANSVERSE MODES;39
8.4;REFERENCES 2;43
9;3. Generation of Ultrashort Laser Pulses;45
9.1;3.1. MODELOCKING. RELATIONSHIP BETWEEN LINEWIDTH OF STIMULATED EMISSION AND PULSE DURATION;46
9.2;3.2. METHODS OF MODELOCKING. ACTIVE AND PASSIVE MODELOCKING;54
9.3;3.3. Q-SWITCHING;63
9.4;3.4. CAVITY DUMPING;66
9.5;REFERENCES 3;72
10;4. Lasers;73
10.1;4.1. RUBY LASER;74
10.2;4.2. MOLECULAR GAS LASERS FROM THE INFRARED REGION;75
10.2.1;4.2.1. Lasers Operating on Rotational Transitions;76
10.2.2;4.2.2. Lasers Operating on Vibrational-Rotational Transitions: CO2 and CO;77
10.3;4.3. CHEMICAL LASERS;82
10.4;4.4. SOLID-STATE LASERS;83
10.4.1;4.4.1. Neodymium Laser and other Rare-Earth Lasers;84
10.4.2;4.4.2. Solid- State Tunable Lasers (Vibronic Lasers);88
10.4.3;4.4.3. Fiber Lasers;92
10.5;4.5. GAS LASERS FOR THE VISIBLE RANGE;96
10.5.1;4.5.1. Helium–Neon Laser;96
10.5.2;4.5.2. Ion–Gas Lasers. Argon and Krypton Lasers;97
10.6;4.6. LIQUID DYE LASERS;98
10.7;4.7. GAS LASERS FOR THE ULTRAVIOLET RANGE;101
10.7.1;4.7.1. Excimer Lasers;101
10.7.2;4.7.2. Nitrogen Laser;104
10.8;4.8. DIODE LASERS;104
10.8.1;4.8.1. Intrinsic Semiconductors. Doped Semiconductors. Junction;104
10.8.2;4.8.2. Diode Lasers;108
10.9;REFERENCES 4;118
11;5. Nonlinear Optics;121
11.1;5.1. SECOND ORDER NONLINEAR PHENOMENA;124
11.2;5.2. PHASE MATCHING METHODS;127
11.3;5.3. PRACTICAL ASPECTS OF THE SECOND HARMONIC GENERATION;132
11.3.1;5.3.1. SHG for Pico- and Femtosecond Pulses;134
11.4;5.4. PARAMETRIC OSCILLATOR;139
11.5;5.5. THE THIRD ORDER NONLINEAR PROCESSES;145
11.5.1;5.5.1. Stimulated Raman Scattering;146
11.5.2;5.5.2. Coherent Anti-Stokes Raman Scattering (CARS);149
11.5.3;5.5.3. The Other Techniques of Nonlinear Stimulated Raman Scattering;151
11.6;5.6. NONLINEAR DISPERSION PHENOMENA AFFECTING PICOSECOND AND FEMTOSECOND PULSE DURATION - GROUP VELOCITY DISPERSION (GVD) AND SELF PHASE MODULATION (SPM);153
11.7;REFERENCES 5;160
12;6. Pulse Amplification;161
12.1;6.1. INTRODUCTION;161
12.2;6.2. THEORETICAL BACKGROUND;161
12.3;6.3. DESIGN FEATURES OF AMPLIFIERS;164
12.4;6.4. REGENERATIVE AMPLIFIER;166
12.4.1;6.4.1. The Pockels Cell;168
12.5;6.5. CHIRPED PULSE AMPLIFICATION (CPA);170
12.6;REFERENCES 6;173
13;7. The Measurement of Ultrashort Laser Pulses;175
13.1;7.1. AUTOCORRELATION TECHNIQUES;176
13.2;7.2. FROG TECHNIQUES;184
13.3;REFERENCES 7;187
14;8. Selected Methods of Time-Resolved Laser Spectroscopy;189
14.1;8.1. FLUORESCENCE DECAY;190
14.2;8.2. THE PUMP-PROBE METHOD;197
14.3;8.3. CARS AS A TIME-RESOLVED METHOD;203
14.4;8.4. PHOTON ECHO;205
14.4.1;8.4.1. Spin Echo in NMR;205
14.4.2;8.4.2. Optical Resonance;212
14.4.3;8.4.3. Quantum-Classical Description of the Photon Echo;215
14.4.4;8.4.4. Practical Advantages of Photon Echo Applications;223
14.5;8.5. QUANTUM BEATS;226
14.5.1;8.5.1. Quantum Description;226
14.5.2;8.5.2. Examples of Quantum Beats Applications;228
14.6;REFERENCES 8;229
15;9. Ultrafast Chemical and Physical Processes;233
15.1;9.1. FEMTOCHEMISTRY. WAVE PACKET DYNAMICS. THEORY;235
15.2;9.2. FEMTOCHEMISTRY. SPECTROSCOPIC APPLICATION OF WAVE ..PACKET DYNAMICS;243
15.2.1;9.2.1. Excited-State Vibrational Coherence;245
15.2.2;9.2.2. Vibrational Coherence in ‘‘Reacting’’ Excited-State Molecules. Bacteriorhodopsin;246
15.2.3;9.2.3. H-Bond Dynamics;249
15.3;9.3. PHOTOISOMERIZATION;254
15.3.1;9.3.1. Photoisomerization of cis- and trans- Stilbene;254
15.4;9.4. INTRAMOLECULAR CHARGE TRANSFER;256
15.5;9.5. MOLECULAR REORIENTATIONS;257
15.6;9.6. INVESTIGATION OF INTERMEDIATES;259
15.6.1;9.6.1. Photoreduction;259
15.6.2;9.6.2. Carbenes;260
15.6.3;9.6.3. Excited-State Proton Transfer;261
15.7;9.7. ULTRAFAST COHERENT SPECTROSCOPY. VIBRATIONAL DYNAMICS;263
15.7.1;9.7.1. Energy Relaxation T1, and Phase Relaxation T2;265
15.8;9.8. DYNAMICS OF AN EXCESS ELECTRON. SOLVATED ELECTRON;271
15.9;9.9. EXCESS ELECTRON SPECTROSCOPY;274
15.10;REFERENCES 9;278
16;10. Lasers in Medicine;285
16.1;10.1. INTRODUCTION;285
16.2;10.2. PHOTOCHEMICAL INTERACTIONS;288
16.2.1;10.2.1. Photodynamic Therapy;288
16.2.2;10.2.2. Sensitizers;289
16.2.3;10.2.3. Photochemistry of Sensitizers;291
16.3;10.3. THERMAL INTERACTION;292
16.4;10.4. PHOTOABLATION;293
16.5;10.5. PLASMA-INDUCED ABLATION;294
16.6;10.6. APPLICATION OF LASERS IN MEDICINE;294
16.7;REFERENCES 10;297
17;11. Potential Hazards Associated with Inappropriate Use of Lasers;299
17.1;11.1. RADIATION HAZARDS;300
17.1.1;11.1.1. Eye Hazards;301
17.1.2;11.1.2. Skin Hazard;304
17.2;11.2. OTHER HAZARDS;305
18;12. Detectors;307
18.1;12.1. DETECTORS TYPES AND DETECTORS CHARACTERIZING PARAMETERS;308
18.2;12.2. PHOTOEMISSIVE DETECTORS;311
18.3;12.3. SEMICONDUCTOR DETECTORS;314
18.4;12.4. MULTICHANNEL DETECTORS PDA AND CCD;315
18.5;REFERENCES 12;324
19;index;325



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.